You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/shardformer/policies/bloom.py

242 lines
11 KiB

import torch
import torch.distributed as dist
import colossalai.shardformer.layer as col_nn
from .basepolicy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
def build_bloom_alibi_tensor(self, attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
"""
Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
`softmax(l+a) = softmax(l)`. Based on
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly.
Args:
Returns tensor shaped (batch_size * num_heads, 1, max_seq_len)
attention_mask (`torch.Tensor`):
Token-wise attention mask, this should be of shape (batch_size, max_seq_len).
num_heads (`int`, *required*):
number of heads
dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`):
dtype of the output tensor
"""
import math
if dist.is_initialized():
world_size = dist.get_world_size()
num_heads = num_heads * world_size
batch_size, seq_length = attention_mask.shape
closest_power_of_2 = 2**math.floor(math.log2(num_heads))
base = torch.tensor(2**(-(2**-(math.log2(closest_power_of_2) - 3))),
device=attention_mask.device,
dtype=torch.float32)
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
slopes = torch.pow(base, powers)
if closest_power_of_2 != num_heads:
extra_base = torch.tensor(2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))),
device=attention_mask.device,
dtype=torch.float32)
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
# => the query_length dimension will then be broadcasted correctly
# This is more or less identical to T5's relative position bias:
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
alibi = slopes[..., None] * arange_tensor
if dist.is_initialized():
num_heads_per_rank = int(num_heads / dist.get_world_size())
offset = dist.get_rank() * num_heads_per_rank
alibi = alibi.view(batch_size, num_heads, 1, seq_length)
alibi = alibi[:, offset:num_heads_per_rank + offset, :, :]
return alibi.reshape(batch_size * num_heads_per_rank, 1, seq_length).to(dtype)
else:
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
class BloomPolicy(Policy):
def config_sanity_check(self):
pass
def preprocess(self):
# reshape the embedding layer
r"""
Reshape the Embedding layer to make the embedding dimension divisible by world_size
"""
# TODO:
vocab_size = self.model.config.vocab_size
world_size = self.shard_config.tensor_parallel_size
if vocab_size % world_size != 0:
new_vocab_size = vocab_size + world_size - vocab_size % world_size
self.model.resize_token_embeddings(new_vocab_size)
return self.model
def module_policy(self):
from transformers.models.bloom.modeling_bloom import BloomBlock, BloomModel
base_policy = {
BloomBlock:
ModulePolicyDescription(
attribute_replacement={
# 1. shard hidden size
"self_attention.hidden_size":
self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
"self_attention.split_size":
self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
# 2. shard number of heads
"self_attention.num_heads":
self.model.config.n_head // self.shard_config.tensor_parallel_size,
},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="self_attention.query_key_value",
target_module=col_nn.Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="self_attention.dense",
target_module=col_nn.Linear1D_Row,
),
SubModuleReplacementDescription(
suffix="self_attention.attention_dropout",
target_module=col_nn.DropoutForParallelInput,
),
SubModuleReplacementDescription(
suffix="mlp.dense_h_to_4h",
target_module=col_nn.Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="mlp.dense_4h_to_h",
target_module=col_nn.Linear1D_Row,
),
]),
BloomModel:
ModulePolicyDescription(attribute_replacement={
"num_heads": self.model.config.n_head // self.shard_config.tensor_parallel_size,
},
param_replacement=[],
method_replacement={"build_alibi_tensor": build_bloom_alibi_tensor},
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="word_embeddings",
target_module=col_nn.VocabParallelEmbedding1D,
)
])
}
# optimization configuration
if self.shard_config.enable_fused_normalization:
base_policy[BloomModel].sub_module_replacement.extend([
SubModuleReplacementDescription(
suffix="ln_f",
target_module=col_nn.FusedLayerNorm,
),
SubModuleReplacementDescription(
suffix="word_embeddings_layernorm",
target_module=col_nn.FusedLayerNorm,
)
])
base_policy[BloomBlock].sub_module_replacement.extend([
SubModuleReplacementDescription(
suffix="input_layernorm",
target_module=col_nn.FusedLayerNorm,
),
SubModuleReplacementDescription(
suffix="post_attention_layernorm",
target_module=col_nn.FusedLayerNorm,
)
])
return base_policy
def new_model_class(self):
# do nothing
return self.model
def postprocess(self):
return self.model
# BertModel
class BloomModelPolicy(BloomPolicy):
pass
class BloomForCausalLMPolicy(BloomPolicy):
def module_policy(self):
from transformers.models.bloom.modeling_bloom import BloomForCausalLM
policy = super().module_policy()
# add a new item for casual lm
new_item = {
BloomForCausalLM:
ModulePolicyDescription(attribute_replacement={},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(suffix="lm_head",
target_module=col_nn.Linear1D_Col,
kwargs=dict(gather_output=True))
])
}
policy.update(new_item)
return policy
class BloomForSequenceClassificationPolicy(BloomPolicy):
def module_policy(self):
from transformers.models.bloom.modeling_bloom import BloomForSequenceClassification
policy = super().module_policy()
# add a new item for casual lm
new_item = {
BloomForSequenceClassification:
ModulePolicyDescription(attribute_replacement={},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(suffix="score",
target_module=col_nn.Linear1D_Col,
kwargs=dict(gather_output=True))
])
}
policy.update(new_item)
return policy
class BloomForTokenClassificationPolicy(BloomPolicy):
def module_policy(self):
from transformers.models.bloom.modeling_bloom import BloomForTokenClassification
policy = super().module_policy()
# add a new item for casual lm
new_item = {
BloomForTokenClassification:
ModulePolicyDescription(attribute_replacement={},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(suffix="classifier",
target_module=col_nn.Linear1D_Col,
kwargs=dict(gather_output=True)),
SubModuleReplacementDescription(
suffix="dropout",
target_module=col_nn.DropoutForReplicatedInput,
),
])
}
policy.update(new_item)
return policy
class BloomForQuestionAnsweringPolicy(BloomPolicy):
# No head sharding as the output features is only 2
pass