mirror of https://github.com/hpcaitech/ColossalAI
65 lines
2.0 KiB
Python
65 lines
2.0 KiB
Python
import torch
|
|
from ..registry import meta_patched_function
|
|
|
|
|
|
@meta_patched_function.register(torch.matmul)
|
|
@meta_patched_function.register('matmul') # for built-in op @
|
|
def torch_matmul(input, other, *, out=None):
|
|
# copied from huggingface.utils.fx
|
|
d1 = input.dim()
|
|
d2 = other.dim()
|
|
shape = None
|
|
if d1 == 1 and d2 == 1:
|
|
shape = None
|
|
elif d1 == 2 and d2 == 2:
|
|
shape = (input.size(0), other.size(1))
|
|
elif d1 == 1 and d2 == 2:
|
|
shape = (other.size(1),)
|
|
elif d1 == 2 and d1 == 1:
|
|
shape = (input.size(0),)
|
|
else:
|
|
max_length = max(input.dim(), other.dim())
|
|
shape1 = list(input.shape)
|
|
shape2 = list(other.shape)
|
|
if d1 == 1:
|
|
shape1 = [1] + shape1
|
|
if d2 == 1:
|
|
shape2.append(1)
|
|
shape1 = [-1] * (max_length - d1) + list(input.shape)
|
|
shape2 = [-1] * (max_length - d2) + list(other.shape)
|
|
shape = []
|
|
for i in range(max_length):
|
|
shape.append(max(shape1[i], shape2[i]))
|
|
shape[-2] = shape1[-2]
|
|
shape[-1] = shape2[-1]
|
|
if d1 == 1:
|
|
shape.pop(-2)
|
|
if d2 == 1:
|
|
shape.pop(-1)
|
|
if shape is None:
|
|
return torch.tensor(0.0, device="meta")
|
|
return torch.empty(*shape, device="meta")
|
|
|
|
|
|
@meta_patched_function.register(torch.abs)
|
|
def torch_abs(input, *, out=None):
|
|
assert out is None, 'out is not supported yet'
|
|
return torch.empty(input.shape, device='meta')
|
|
|
|
|
|
@meta_patched_function.register(torch.bmm)
|
|
def torch_bmm(input, mat2, *, out=None):
|
|
if out is not None:
|
|
raise ValueError("Don't support in-place abs for MetaTensor analysis")
|
|
batch_size, n, m = input.shape
|
|
_, _, p = mat2.shape
|
|
return torch.empty(batch_size, n, p, device="meta")
|
|
|
|
|
|
@meta_patched_function.register(torch.var_mean)
|
|
def torch_var_mean(input, dim, unbiased=True, keepdim=False, *, out=None):
|
|
assert out is None, 'saving to out is not supported yet'
|
|
var = torch.empty(1).squeeze(0).to('meta')
|
|
mean = torch.empty(1).squeeze(0).to('meta')
|
|
return var, mean
|