mirror of https://github.com/hpcaitech/ColossalAI
129 lines
5.5 KiB
Python
129 lines
5.5 KiB
Python
import pytest
|
|
import torch
|
|
from einops import rearrange
|
|
|
|
from colossalai.kernel.cuda_native.flash_attention import HAS_FLASH_ATTN, HAS_TRITON
|
|
|
|
if HAS_FLASH_ATTN:
|
|
from colossalai.kernel.cuda_native.flash_attention import (
|
|
MaskedFlashAttention,
|
|
flash_attention_q_k_v,
|
|
flash_attention_q_kv,
|
|
flash_attention_qkv,
|
|
)
|
|
|
|
if HAS_TRITON:
|
|
from colossalai.kernel.cuda_native.flash_attention import triton_flash_attention
|
|
|
|
|
|
def baseline_attention(Z, N_CTX, H, q, k, v, sm_scale):
|
|
M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda"))
|
|
p = torch.matmul(q, k.transpose(2, 3)) * sm_scale
|
|
for z in range(Z):
|
|
for h in range(H):
|
|
p[:, :, M == 0] = float("-inf")
|
|
p = torch.softmax(p.float(), dim=-1).half()
|
|
ref_out = torch.matmul(p, v)
|
|
return ref_out
|
|
|
|
|
|
@pytest.mark.skipif(HAS_TRITON == False, reason="triton is not available")
|
|
@pytest.mark.parametrize('Z, H, N_CTX, D_HEAD', [(3, 4, 2, 16)])
|
|
def test_triton_flash_attention(Z, H, N_CTX, D_HEAD, dtype=torch.float16):
|
|
torch.manual_seed(20)
|
|
q = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_()
|
|
k = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_()
|
|
v = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_()
|
|
sm_scale = 0.3
|
|
dout = torch.randn_like(q)
|
|
|
|
ref_out = baseline_attention(Z, N_CTX, H, q, k, v, sm_scale)
|
|
ref_out.backward(dout)
|
|
ref_dv, v.grad = v.grad.clone(), None
|
|
ref_dk, k.grad = k.grad.clone(), None
|
|
ref_dq, q.grad = q.grad.clone(), None
|
|
|
|
# triton implementation
|
|
tri_out = triton_flash_attention(q, k, v, sm_scale)
|
|
tri_out.backward(dout)
|
|
tri_dv, v.grad = v.grad.clone(), None
|
|
tri_dk, k.grad = k.grad.clone(), None
|
|
tri_dq, q.grad = q.grad.clone(), None
|
|
# compare
|
|
assert torch.allclose(ref_out, tri_out, atol=1e-3)
|
|
assert torch.allclose(ref_dv, tri_dv, atol=1e-3)
|
|
assert torch.allclose(ref_dk, tri_dk, atol=1e-3)
|
|
assert torch.allclose(ref_dq, tri_dq, atol=1e-3)
|
|
|
|
|
|
@pytest.mark.skipif(HAS_FLASH_ATTN == False, reason="flash is not available")
|
|
@pytest.mark.parametrize('Z, H, N_CTX, D_HEAD', [(3, 4, 2, 16)])
|
|
def test_flash_attention(Z, H, N_CTX, D_HEAD, dtype=torch.float16):
|
|
torch.manual_seed(20)
|
|
q = torch.randn((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_()
|
|
k = torch.randn((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_()
|
|
v = torch.randn((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_()
|
|
sm_scale = 0.3
|
|
dout = torch.randn_like(q)
|
|
|
|
# reference implementation
|
|
ref_out = baseline_attention(Z, N_CTX, H, q, k, v, sm_scale)
|
|
ref_out.backward(dout)
|
|
ref_dv, v.grad = v.grad.clone(), None
|
|
ref_dk, k.grad = k.grad.clone(), None
|
|
ref_dq, q.grad = q.grad.clone(), None
|
|
|
|
# flash implementation
|
|
q, k, v = map(lambda x: rearrange(x, 'z h n d -> (z n) h d'), [q, k, v])
|
|
dout = rearrange(dout, 'z h n d -> (z n) h d').detach()
|
|
for i in range(3):
|
|
if i == 0:
|
|
tri_out = flash_attention_q_k_v(q, k, v, sm_scale, Z, N_CTX, N_CTX, causal=True)
|
|
elif i == 1:
|
|
kv = torch.cat((k.unsqueeze(1), v.unsqueeze(1)), dim=1)
|
|
tri_out = flash_attention_q_kv(q, kv, sm_scale, Z, N_CTX, N_CTX, causal=True)
|
|
else:
|
|
qkv = torch.cat((q.unsqueeze(1), k.unsqueeze(1), v.unsqueeze(1)), dim=1)
|
|
tri_out = flash_attention_qkv(qkv, sm_scale, Z, N_CTX, causal=True)
|
|
|
|
tri_out.backward(dout, retain_graph=True)
|
|
|
|
if i == 0:
|
|
tri_dq, tri_dk, tri_dv, = torch.autograd.grad(tri_out, (q, k, v), dout)
|
|
tri_out, tri_dq, tri_dk, tri_dv = map(lambda x: rearrange(x, '(z n) h d -> z h n d', z=Z),
|
|
(tri_out, tri_dq, tri_dk, tri_dv))
|
|
elif i == 1:
|
|
tri_dq, tri_dkv, = torch.autograd.grad(tri_out, (q, kv), dout)
|
|
tri_dk, tri_dv = torch.chunk(tri_dkv, 2, dim=1)
|
|
tri_out, tri_dq, tri_dk, tri_dv = map(lambda x: rearrange(x, '(z n) h d -> z h n d', z=Z),
|
|
(tri_out, tri_dq, tri_dk.squeeze(1), tri_dv.squeeze(1)))
|
|
else:
|
|
tri_dqkv, = torch.autograd.grad(tri_out, (qkv), dout)
|
|
tri_dq, tri_dk, tri_dv = torch.chunk(tri_dqkv, 3, dim=1)
|
|
tri_out, tri_dq, tri_dk, tri_dv = map(lambda x: rearrange(x, '(z n) h d -> z h n d', z=Z),
|
|
(tri_out, tri_dq.squeeze(1), tri_dk.squeeze(1), tri_dv.squeeze(1)))
|
|
|
|
# compare
|
|
assert torch.allclose(ref_out, tri_out, atol=1e-3)
|
|
assert torch.allclose(ref_dv, tri_dv, atol=1e-3)
|
|
assert torch.allclose(ref_dk, tri_dk, atol=1e-3)
|
|
assert torch.allclose(ref_dq, tri_dq, atol=1e-3)
|
|
|
|
|
|
@pytest.mark.skipif(HAS_FLASH_ATTN == False, reason="flash is not available")
|
|
@pytest.mark.parametrize('Z, H, N_CTX, D_HEAD', [(3, 4, 2, 16)])
|
|
def test_masked_flash_attention(Z, H, N_CTX, D_HEAD, dtype=torch.float16):
|
|
attn = MaskedFlashAttention(N_CTX, D_HEAD, 0.1)
|
|
|
|
qkv = torch.randn((Z, H, 3 * N_CTX * D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_()
|
|
attention_mask = torch.randint(2, (Z, H)).cuda().bool()
|
|
|
|
out = attn(qkv, attention_mask)
|
|
|
|
dout = torch.rand_like(out)
|
|
out.backward(dout)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_flash_attention(3, 4, 2, 16)
|