mirror of https://github.com/hpcaitech/ColossalAI
378 lines
16 KiB
Python
378 lines
16 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
import math
|
|
from typing import Callable, List, Tuple, Union
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch import Tensor
|
|
from torch.distributed import ProcessGroup
|
|
from torch.nn.parameter import Parameter
|
|
|
|
from colossalai.nn import init as init
|
|
from colossalai.nn.layer.utils import divide
|
|
from colossalai.tensor.d_tensor.api import shard_colwise, shard_rowwise
|
|
from colossalai.utils.cuda import get_current_device
|
|
|
|
from ._operation import (
|
|
gather_forward_split_backward,
|
|
linear_with_async_comm,
|
|
reduce_input,
|
|
split_forward_gather_backward,
|
|
)
|
|
from .parallelmodule import ParallelModule
|
|
from .utils import create_randomizer_with_offset
|
|
|
|
Fast_LN = None
|
|
try:
|
|
from apex.contrib.layer_norm.layer_norm import FastLayerNorm
|
|
Fast_LN = FastLayerNorm
|
|
except ImportError:
|
|
pass
|
|
|
|
|
|
class LinearConv1D_Col(ParallelModule):
|
|
r"""Linear layer with column parallelism.
|
|
|
|
The linear layer is defined as :math:`Y = XA + b`. A is parallelized along
|
|
its second dimension as :math:`A = [A_1, ..., A_p]`. This layer is used to fit `Conv1D` layer in gpt2 of huggingface.
|
|
|
|
Args:
|
|
in_features (int): size of each input sample.
|
|
out_features (int): size of each output sample.
|
|
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``.
|
|
dtype (`torch.dtype`): The dtype of parameters, defaults to None.
|
|
device (`torch.device`): The device of parameters, defaults to None.
|
|
process_group (`torch.distributed.ProcessGroup`): The process group to be used for weight sharding and communication, defaults to None.
|
|
gather_output (bool, optional): If true, call all-gather on output and make Y available
|
|
to all GPUs, otherwise, every GPU will have its output
|
|
which is :math:`Y_i = XA_i`, defaults to False
|
|
skip_bias_add (bool): If set to ``True``, it will skip bias add for linear layer,
|
|
which is preserved for kernel fusion, defaults to False
|
|
weight_initializer (`typing.Callable`):
|
|
The initializer of weight, defaults to kaiming uniform initializer.
|
|
bias_initializer (`typing.Callable`):
|
|
The initializer of bias, defaults to xavier uniform initializer.
|
|
|
|
More details about ``initializer`` please refer to
|
|
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_features: int,
|
|
out_features: int,
|
|
bias: bool = True,
|
|
dtype: torch.dtype = None,
|
|
device: torch.device = None,
|
|
process_group: ProcessGroup = None,
|
|
gather_output: bool = False,
|
|
skip_bias_add: bool = False,
|
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
|
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)):
|
|
super().__init__()
|
|
|
|
# Keep input parameters
|
|
self.in_features = in_features
|
|
self.out_features = out_features
|
|
self.gather_output = gather_output
|
|
self.skip_bias_add = skip_bias_add
|
|
self.device = device
|
|
self.process_group = process_group
|
|
self.num_partitions = dist.get_world_size(self.process_group)
|
|
|
|
if skip_bias_add and not bias:
|
|
raise ValueError('cannot skip bias addition if bias is None')
|
|
|
|
self.out_features_per_partition = divide(out_features, self.num_partitions)
|
|
|
|
# Parameters.
|
|
# Initialize weight.
|
|
if device is None:
|
|
device = get_current_device()
|
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
|
self.weight = Parameter(torch.empty(self.out_features_per_partition, self.in_features, **factory_kwargs))
|
|
|
|
if bias:
|
|
self.bias = Parameter(torch.empty(self.out_features_per_partition, **factory_kwargs))
|
|
else:
|
|
self.bias = None
|
|
|
|
# offset the seed with randomizer index and rank
|
|
seed = torch.random.initial_seed()
|
|
self.randomizer = create_randomizer_with_offset(seed, process_group=self.process_group)
|
|
|
|
with self.randomizer.fork_rng(enable_cpu=True):
|
|
self.reset_parameters(weight_initializer, bias_initializer)
|
|
|
|
@staticmethod
|
|
def from_native_module(module: nn.Linear, process_group: Union[ProcessGroup, List[ProcessGroup]], n_cast: int,
|
|
*args, **kwargs) -> ParallelModule:
|
|
r"""
|
|
Convert a huggingface layer `Conv1D` in gpt2 to a parallelized linear layer.
|
|
"""
|
|
# get the attributes
|
|
in_features = module.weight.shape[0]
|
|
out_features = module.weight.shape[1]
|
|
bias = module.bias is not None
|
|
device = module.weight.device
|
|
|
|
# ensure only one process group is passed
|
|
if isinstance(process_group, (list, tuple)):
|
|
assert len(process_group) == 1, \
|
|
f'Expected only one process group, got {len(process_group)}.'
|
|
process_group = process_group[0]
|
|
|
|
linear_1d = LinearConv1D_Col(in_features=in_features,
|
|
out_features=out_features,
|
|
bias=bias,
|
|
device=device,
|
|
process_group=process_group,
|
|
*args,
|
|
**kwargs)
|
|
|
|
# TODO: copy the sharded weights
|
|
with torch.no_grad():
|
|
# the weigh to the linear layer is a transpose
|
|
# thus shard on row is equal to shard on column
|
|
|
|
# first rearange the order of weight and bias
|
|
world_size = dist.get_world_size(group=process_group)
|
|
order = torch.arange(world_size * n_cast)
|
|
new_order = []
|
|
for i in range(world_size):
|
|
new_order.append(order[i::world_size])
|
|
new_order = torch.cat(new_order)
|
|
|
|
weight_chunks = torch.chunk(module.weight.data, world_size * n_cast, dim=1)
|
|
rearanged_weight_chunks = [weight_chunks[i] for i in new_order]
|
|
rearanged_weight = torch.cat(rearanged_weight_chunks, dim=1)
|
|
sharded_weight = shard_colwise(rearanged_weight, process_group)
|
|
linear_1d.weight.data.copy_(sharded_weight.T.contiguous())
|
|
|
|
if bias:
|
|
bias_chunks = torch.chunk(module.bias.data, world_size * n_cast, dim=0)
|
|
rearanged_bias_chunks = [bias_chunks[i] for i in new_order]
|
|
rearanged_bias = torch.cat(rearanged_bias_chunks, dim=0)
|
|
sharded_bias = shard_colwise(rearanged_bias, process_group)
|
|
linear_1d.bias.copy_(sharded_bias.contiguous())
|
|
|
|
return linear_1d
|
|
|
|
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
|
|
fan_in, fan_out = self.in_features, self.out_features
|
|
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
|
|
if self.bias is not None:
|
|
bias_initializer(self.bias, fan_in=fan_in)
|
|
|
|
def forward(self, input_: Tensor) -> Tuple[Tensor, Tensor]:
|
|
assert input_.shape[-1] == self.weight.shape[-1], \
|
|
'Invalid shapes in Linear1D_Col forward: input={}, weight={}. Expected last dim of input {}.'.format(
|
|
input_.shape, self.weight.shape, self.weight.shape[-1])
|
|
# Set up backprop all-reduce.
|
|
# input_parallel = reduce_grad(input_, ParallelMode.PARALLEL_1D)
|
|
input_parallel = input_
|
|
# Matrix multiply.
|
|
bias = self.bias if not self.skip_bias_add else None
|
|
output_parallel = linear_with_async_comm(input_parallel, self.weight, bias, self.process_group, True)
|
|
|
|
if self.gather_output:
|
|
# All-gather across the partitions.
|
|
output = gather_forward_split_backward(output_parallel, dim=-1, process_group=self.process_group)
|
|
else:
|
|
output = output_parallel
|
|
|
|
if self.skip_bias_add:
|
|
return output, self.bias
|
|
else:
|
|
return output
|
|
|
|
|
|
class LinearConv1D_Row(ParallelModule):
|
|
r""" Linear layer with row parallelism
|
|
|
|
Args:
|
|
in_features (int): size of each input sample.
|
|
out_features (int): size of each output sample.
|
|
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``.
|
|
dtype (`torch.dtype`): The dtype of parameters, defaults to None.
|
|
parallel_input (bool): If set to ``True``, it's assumed that the input is split, defaults to False.
|
|
skip_bias_add (bool): If set to ``True``, it will skip bias add for linear layer,
|
|
which is preserved for kernel fusion, defaults to False
|
|
weight_initializer (:class:`typing.Callable`, optional):
|
|
The initializer of weight, defaults to kaiming uniform initializer.
|
|
bias_initializer (:class:`typing.Callable`, optional):
|
|
The initializer of bias, defaults to xavier uniform initializer.
|
|
|
|
More details about ``initializer`` please refer to
|
|
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_features: int,
|
|
out_features: int,
|
|
bias: bool = True,
|
|
dtype: torch.dtype = None,
|
|
device: torch.device = None,
|
|
process_group: ProcessGroup = None,
|
|
parallel_input: bool = True,
|
|
skip_bias_add: bool = False,
|
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
|
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
|
stream_chunk_num: int = 1):
|
|
super().__init__()
|
|
|
|
self.stream_chunk_num = stream_chunk_num
|
|
|
|
# Keep input parameters
|
|
self.in_features = in_features
|
|
self.out_features = out_features
|
|
self.parallel_input = parallel_input
|
|
self.skip_bias_add = skip_bias_add
|
|
self.process_group = process_group
|
|
self.num_partitions = dist.get_world_size(self.process_group)
|
|
|
|
if skip_bias_add and not bias:
|
|
raise ValueError('cannot skip bias addition if bias is None')
|
|
|
|
# Divide the weight matrix along the last dimension.
|
|
self.input_size_per_partition = divide(in_features, self.num_partitions)
|
|
|
|
# Parameters.
|
|
# Initialize weight.
|
|
if device is None:
|
|
device = get_current_device()
|
|
|
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
|
self.weight = Parameter(torch.empty(self.out_features, self.input_size_per_partition, **factory_kwargs))
|
|
|
|
if self.stream_chunk_num > 1:
|
|
# TODO() work for inference only
|
|
self.chunk_weight()
|
|
if bias:
|
|
self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs))
|
|
else:
|
|
self.bias = None
|
|
|
|
# offset the seed with randomizer index and rank
|
|
seed = torch.random.initial_seed()
|
|
self.randomizer = create_randomizer_with_offset(seed, process_group=self.process_group)
|
|
|
|
with self.randomizer.fork_rng(enable_cpu=True):
|
|
self.reset_parameters(weight_initializer, bias_initializer)
|
|
|
|
@staticmethod
|
|
def from_native_module(module: nn.Linear, process_group: Union[ProcessGroup, List[ProcessGroup]], n_cast: int,
|
|
*args, **kwargs) -> ParallelModule:
|
|
r"""
|
|
Convert a native PyTorch linear layer to a parallelized linear layer.
|
|
"""
|
|
# get the attributes
|
|
in_features = module.weight.shape[0]
|
|
out_features = module.weight.shape[1]
|
|
bias = module.bias is not None
|
|
device = module.weight.device
|
|
|
|
# ensure only one process group is passed
|
|
if isinstance(process_group, (list, tuple)):
|
|
assert len(process_group) == 1, \
|
|
f'Expected only one process group, got {len(process_group)}.'
|
|
process_group = process_group[0]
|
|
|
|
linear_1d = LinearConv1D_Row(in_features=in_features,
|
|
out_features=out_features,
|
|
bias=bias,
|
|
device=device,
|
|
process_group=process_group,
|
|
*args,
|
|
**kwargs)
|
|
|
|
# TODO: copy the sharded weights
|
|
with torch.no_grad():
|
|
# the weigh to the linear layer is a transpose
|
|
# thus shard on col is equal to shard on row
|
|
|
|
# first rearange the order of weight and bias
|
|
world_size = dist.get_world_size(group=process_group)
|
|
order = torch.arange(world_size * n_cast)
|
|
new_order = []
|
|
for i in range(world_size):
|
|
new_order.append(order[i::world_size])
|
|
new_order = torch.cat(new_order)
|
|
|
|
weight_chunks = torch.chunk(module.weight.data, world_size * n_cast, dim=0)
|
|
rearanged_weight_chunks = [weight_chunks[i] for i in new_order]
|
|
rearanged_weight = torch.cat(rearanged_weight_chunks, dim=0)
|
|
sharded_weight = shard_rowwise(rearanged_weight, process_group)
|
|
linear_1d.weight.data.copy_(sharded_weight.T.contiguous())
|
|
|
|
if bias:
|
|
bias_chunks = torch.chunk(module.bias.data, world_size * n_cast, dim=0)
|
|
rearanged_bias_chunks = [bias_chunks[i] for i in new_order]
|
|
rearanged_bias = torch.cat(rearanged_bias_chunks, dim=0)
|
|
linear_1d.bias.copy_(rearanged_bias.contiguous())
|
|
|
|
return linear_1d
|
|
|
|
def chunk_weight(self):
|
|
self.weight_list = torch.chunk(self.weight, self.stream_chunk_num, dim=0)
|
|
|
|
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
|
|
fan_in, fan_out = self.in_features, self.out_features
|
|
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
|
|
|
|
if self.bias is not None:
|
|
bias_initializer(self.bias, fan_in=fan_in)
|
|
if self.process_group is None:
|
|
src_rank = 0
|
|
else:
|
|
src_rank = dist.distributed_c10d._get_global_rank(self.process_group, 0)
|
|
|
|
origin_device = self.bias.device
|
|
self.bias = self.bias.cuda()
|
|
dist.broadcast(self.bias, src=src_rank, group=self.process_group)
|
|
self.bias = self.bias.to(origin_device)
|
|
|
|
def forward(self, input_: Tensor) -> Tensor:
|
|
# Set up backprop all-reduce.
|
|
if self.parallel_input:
|
|
assert input_.shape[-1] == self.weight.shape[-1], \
|
|
'Invalid shapes in Linear1D_Row forward: input={}, weight={}. Expected last dim of input {}.'.format(
|
|
input_.shape, self.weight.shape, self.weight.shape[-1])
|
|
input_ = input_
|
|
else:
|
|
assert divide(input_.shape[-1], self.num_partitions) == self.weight.shape[-1], \
|
|
'Invalid shapes in Linear1D_Row forward: input={}, weight={}. Expected last dim of input {}.'.format(
|
|
input_.shape, self.weight.shape, self.weight.shape[-1] * self.num_partitions)
|
|
input_ = split_forward_gather_backward(input_, dim=-1, process_group=self.process_group)
|
|
|
|
if self.stream_chunk_num > 1:
|
|
if self.training:
|
|
raise RuntimeError("use stream_chunk_num=1 in Linear1D_Row for training!")
|
|
with torch.no_grad():
|
|
output_parallel_list = [None for i in range(self.stream_chunk_num)]
|
|
handle_list = []
|
|
for i in range(self.stream_chunk_num):
|
|
output_parallel_list[i] = F.linear(input_, self.weight_list[i])
|
|
handle = torch.distributed.all_reduce(output_parallel_list[i],
|
|
group=self.process_group,
|
|
async_op=True)
|
|
handle_list.append(handle)
|
|
# output_parallel_list[i] = reduce_input(output_parallel_list[i], ParallelMode.PARALLEL_1D)
|
|
for handle in handle_list:
|
|
handle.wait()
|
|
output = torch.cat(output_parallel_list, dim=-1)
|
|
else:
|
|
output_parallel = F.linear(input_, self.weight)
|
|
# output_parallel = linear_with_async_comm(input_, self.weight, None, ParallelMode.PARALLEL_1D, False)
|
|
output = reduce_input(output_parallel, self.process_group)
|
|
|
|
if not self.skip_bias_add:
|
|
if self.bias is not None:
|
|
output = output + self.bias
|
|
return output
|
|
else:
|
|
return output, self.bias
|