ColossalAI/colossalai/shardformer/layer/linearconv1d.py

378 lines
16 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import math
from typing import Callable, List, Tuple, Union
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.distributed import ProcessGroup
from torch.nn.parameter import Parameter
from colossalai.nn import init as init
from colossalai.nn.layer.utils import divide
from colossalai.tensor.d_tensor.api import shard_colwise, shard_rowwise
from colossalai.utils.cuda import get_current_device
from ._operation import (
gather_forward_split_backward,
linear_with_async_comm,
reduce_input,
split_forward_gather_backward,
)
from .parallelmodule import ParallelModule
from .utils import create_randomizer_with_offset
Fast_LN = None
try:
from apex.contrib.layer_norm.layer_norm import FastLayerNorm
Fast_LN = FastLayerNorm
except ImportError:
pass
class LinearConv1D_Col(ParallelModule):
r"""Linear layer with column parallelism.
The linear layer is defined as :math:`Y = XA + b`. A is parallelized along
its second dimension as :math:`A = [A_1, ..., A_p]`. This layer is used to fit `Conv1D` layer in gpt2 of huggingface.
Args:
in_features (int): size of each input sample.
out_features (int): size of each output sample.
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``.
dtype (`torch.dtype`): The dtype of parameters, defaults to None.
device (`torch.device`): The device of parameters, defaults to None.
process_group (`torch.distributed.ProcessGroup`): The process group to be used for weight sharding and communication, defaults to None.
gather_output (bool, optional): If true, call all-gather on output and make Y available
to all GPUs, otherwise, every GPU will have its output
which is :math:`Y_i = XA_i`, defaults to False
skip_bias_add (bool): If set to ``True``, it will skip bias add for linear layer,
which is preserved for kernel fusion, defaults to False
weight_initializer (`typing.Callable`):
The initializer of weight, defaults to kaiming uniform initializer.
bias_initializer (`typing.Callable`):
The initializer of bias, defaults to xavier uniform initializer.
More details about ``initializer`` please refer to
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
"""
def __init__(self,
in_features: int,
out_features: int,
bias: bool = True,
dtype: torch.dtype = None,
device: torch.device = None,
process_group: ProcessGroup = None,
gather_output: bool = False,
skip_bias_add: bool = False,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)):
super().__init__()
# Keep input parameters
self.in_features = in_features
self.out_features = out_features
self.gather_output = gather_output
self.skip_bias_add = skip_bias_add
self.device = device
self.process_group = process_group
self.num_partitions = dist.get_world_size(self.process_group)
if skip_bias_add and not bias:
raise ValueError('cannot skip bias addition if bias is None')
self.out_features_per_partition = divide(out_features, self.num_partitions)
# Parameters.
# Initialize weight.
if device is None:
device = get_current_device()
factory_kwargs = {'device': device, 'dtype': dtype}
self.weight = Parameter(torch.empty(self.out_features_per_partition, self.in_features, **factory_kwargs))
if bias:
self.bias = Parameter(torch.empty(self.out_features_per_partition, **factory_kwargs))
else:
self.bias = None
# offset the seed with randomizer index and rank
seed = torch.random.initial_seed()
self.randomizer = create_randomizer_with_offset(seed, process_group=self.process_group)
with self.randomizer.fork_rng(enable_cpu=True):
self.reset_parameters(weight_initializer, bias_initializer)
@staticmethod
def from_native_module(module: nn.Linear, process_group: Union[ProcessGroup, List[ProcessGroup]], n_cast: int,
*args, **kwargs) -> ParallelModule:
r"""
Convert a huggingface layer `Conv1D` in gpt2 to a parallelized linear layer.
"""
# get the attributes
in_features = module.weight.shape[0]
out_features = module.weight.shape[1]
bias = module.bias is not None
device = module.weight.device
# ensure only one process group is passed
if isinstance(process_group, (list, tuple)):
assert len(process_group) == 1, \
f'Expected only one process group, got {len(process_group)}.'
process_group = process_group[0]
linear_1d = LinearConv1D_Col(in_features=in_features,
out_features=out_features,
bias=bias,
device=device,
process_group=process_group,
*args,
**kwargs)
# TODO: copy the sharded weights
with torch.no_grad():
# the weigh to the linear layer is a transpose
# thus shard on row is equal to shard on column
# first rearange the order of weight and bias
world_size = dist.get_world_size(group=process_group)
order = torch.arange(world_size * n_cast)
new_order = []
for i in range(world_size):
new_order.append(order[i::world_size])
new_order = torch.cat(new_order)
weight_chunks = torch.chunk(module.weight.data, world_size * n_cast, dim=1)
rearanged_weight_chunks = [weight_chunks[i] for i in new_order]
rearanged_weight = torch.cat(rearanged_weight_chunks, dim=1)
sharded_weight = shard_colwise(rearanged_weight, process_group)
linear_1d.weight.data.copy_(sharded_weight.T.contiguous())
if bias:
bias_chunks = torch.chunk(module.bias.data, world_size * n_cast, dim=0)
rearanged_bias_chunks = [bias_chunks[i] for i in new_order]
rearanged_bias = torch.cat(rearanged_bias_chunks, dim=0)
sharded_bias = shard_colwise(rearanged_bias, process_group)
linear_1d.bias.copy_(sharded_bias.contiguous())
return linear_1d
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
fan_in, fan_out = self.in_features, self.out_features
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
if self.bias is not None:
bias_initializer(self.bias, fan_in=fan_in)
def forward(self, input_: Tensor) -> Tuple[Tensor, Tensor]:
assert input_.shape[-1] == self.weight.shape[-1], \
'Invalid shapes in Linear1D_Col forward: input={}, weight={}. Expected last dim of input {}.'.format(
input_.shape, self.weight.shape, self.weight.shape[-1])
# Set up backprop all-reduce.
# input_parallel = reduce_grad(input_, ParallelMode.PARALLEL_1D)
input_parallel = input_
# Matrix multiply.
bias = self.bias if not self.skip_bias_add else None
output_parallel = linear_with_async_comm(input_parallel, self.weight, bias, self.process_group, True)
if self.gather_output:
# All-gather across the partitions.
output = gather_forward_split_backward(output_parallel, dim=-1, process_group=self.process_group)
else:
output = output_parallel
if self.skip_bias_add:
return output, self.bias
else:
return output
class LinearConv1D_Row(ParallelModule):
r""" Linear layer with row parallelism
Args:
in_features (int): size of each input sample.
out_features (int): size of each output sample.
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``.
dtype (`torch.dtype`): The dtype of parameters, defaults to None.
parallel_input (bool): If set to ``True``, it's assumed that the input is split, defaults to False.
skip_bias_add (bool): If set to ``True``, it will skip bias add for linear layer,
which is preserved for kernel fusion, defaults to False
weight_initializer (:class:`typing.Callable`, optional):
The initializer of weight, defaults to kaiming uniform initializer.
bias_initializer (:class:`typing.Callable`, optional):
The initializer of bias, defaults to xavier uniform initializer.
More details about ``initializer`` please refer to
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
"""
def __init__(self,
in_features: int,
out_features: int,
bias: bool = True,
dtype: torch.dtype = None,
device: torch.device = None,
process_group: ProcessGroup = None,
parallel_input: bool = True,
skip_bias_add: bool = False,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
stream_chunk_num: int = 1):
super().__init__()
self.stream_chunk_num = stream_chunk_num
# Keep input parameters
self.in_features = in_features
self.out_features = out_features
self.parallel_input = parallel_input
self.skip_bias_add = skip_bias_add
self.process_group = process_group
self.num_partitions = dist.get_world_size(self.process_group)
if skip_bias_add and not bias:
raise ValueError('cannot skip bias addition if bias is None')
# Divide the weight matrix along the last dimension.
self.input_size_per_partition = divide(in_features, self.num_partitions)
# Parameters.
# Initialize weight.
if device is None:
device = get_current_device()
factory_kwargs = {'device': device, 'dtype': dtype}
self.weight = Parameter(torch.empty(self.out_features, self.input_size_per_partition, **factory_kwargs))
if self.stream_chunk_num > 1:
# TODO() work for inference only
self.chunk_weight()
if bias:
self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs))
else:
self.bias = None
# offset the seed with randomizer index and rank
seed = torch.random.initial_seed()
self.randomizer = create_randomizer_with_offset(seed, process_group=self.process_group)
with self.randomizer.fork_rng(enable_cpu=True):
self.reset_parameters(weight_initializer, bias_initializer)
@staticmethod
def from_native_module(module: nn.Linear, process_group: Union[ProcessGroup, List[ProcessGroup]], n_cast: int,
*args, **kwargs) -> ParallelModule:
r"""
Convert a native PyTorch linear layer to a parallelized linear layer.
"""
# get the attributes
in_features = module.weight.shape[0]
out_features = module.weight.shape[1]
bias = module.bias is not None
device = module.weight.device
# ensure only one process group is passed
if isinstance(process_group, (list, tuple)):
assert len(process_group) == 1, \
f'Expected only one process group, got {len(process_group)}.'
process_group = process_group[0]
linear_1d = LinearConv1D_Row(in_features=in_features,
out_features=out_features,
bias=bias,
device=device,
process_group=process_group,
*args,
**kwargs)
# TODO: copy the sharded weights
with torch.no_grad():
# the weigh to the linear layer is a transpose
# thus shard on col is equal to shard on row
# first rearange the order of weight and bias
world_size = dist.get_world_size(group=process_group)
order = torch.arange(world_size * n_cast)
new_order = []
for i in range(world_size):
new_order.append(order[i::world_size])
new_order = torch.cat(new_order)
weight_chunks = torch.chunk(module.weight.data, world_size * n_cast, dim=0)
rearanged_weight_chunks = [weight_chunks[i] for i in new_order]
rearanged_weight = torch.cat(rearanged_weight_chunks, dim=0)
sharded_weight = shard_rowwise(rearanged_weight, process_group)
linear_1d.weight.data.copy_(sharded_weight.T.contiguous())
if bias:
bias_chunks = torch.chunk(module.bias.data, world_size * n_cast, dim=0)
rearanged_bias_chunks = [bias_chunks[i] for i in new_order]
rearanged_bias = torch.cat(rearanged_bias_chunks, dim=0)
linear_1d.bias.copy_(rearanged_bias.contiguous())
return linear_1d
def chunk_weight(self):
self.weight_list = torch.chunk(self.weight, self.stream_chunk_num, dim=0)
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
fan_in, fan_out = self.in_features, self.out_features
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
if self.bias is not None:
bias_initializer(self.bias, fan_in=fan_in)
if self.process_group is None:
src_rank = 0
else:
src_rank = dist.distributed_c10d._get_global_rank(self.process_group, 0)
origin_device = self.bias.device
self.bias = self.bias.cuda()
dist.broadcast(self.bias, src=src_rank, group=self.process_group)
self.bias = self.bias.to(origin_device)
def forward(self, input_: Tensor) -> Tensor:
# Set up backprop all-reduce.
if self.parallel_input:
assert input_.shape[-1] == self.weight.shape[-1], \
'Invalid shapes in Linear1D_Row forward: input={}, weight={}. Expected last dim of input {}.'.format(
input_.shape, self.weight.shape, self.weight.shape[-1])
input_ = input_
else:
assert divide(input_.shape[-1], self.num_partitions) == self.weight.shape[-1], \
'Invalid shapes in Linear1D_Row forward: input={}, weight={}. Expected last dim of input {}.'.format(
input_.shape, self.weight.shape, self.weight.shape[-1] * self.num_partitions)
input_ = split_forward_gather_backward(input_, dim=-1, process_group=self.process_group)
if self.stream_chunk_num > 1:
if self.training:
raise RuntimeError("use stream_chunk_num=1 in Linear1D_Row for training!")
with torch.no_grad():
output_parallel_list = [None for i in range(self.stream_chunk_num)]
handle_list = []
for i in range(self.stream_chunk_num):
output_parallel_list[i] = F.linear(input_, self.weight_list[i])
handle = torch.distributed.all_reduce(output_parallel_list[i],
group=self.process_group,
async_op=True)
handle_list.append(handle)
# output_parallel_list[i] = reduce_input(output_parallel_list[i], ParallelMode.PARALLEL_1D)
for handle in handle_list:
handle.wait()
output = torch.cat(output_parallel_list, dim=-1)
else:
output_parallel = F.linear(input_, self.weight)
# output_parallel = linear_with_async_comm(input_, self.weight, None, ParallelMode.PARALLEL_1D, False)
output = reduce_input(output_parallel, self.process_group)
if not self.skip_bias_add:
if self.bias is not None:
output = output + self.bias
return output
else:
return output, self.bias