mirror of https://github.com/hpcaitech/ColossalAI
150 lines
6.0 KiB
Python
150 lines
6.0 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
from typing import Callable, List, Union
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch import Tensor
|
|
from torch.distributed import ProcessGroup
|
|
from torch.nn.parameter import Parameter
|
|
|
|
from colossalai.nn import init as init
|
|
from colossalai.nn.layer.utils import divide
|
|
from colossalai.tensor.d_tensor.api import shard_colwise
|
|
from colossalai.utils.cuda import get_current_device
|
|
|
|
from ._operation import gather_forward_split_backward
|
|
from .parallelmodule import ParallelModule
|
|
from .utils import create_randomizer_with_offset
|
|
|
|
Fast_LN = None
|
|
try:
|
|
from apex.contrib.layer_norm.layer_norm import FastLayerNorm
|
|
Fast_LN = FastLayerNorm
|
|
except ImportError:
|
|
pass
|
|
|
|
|
|
class Embedding1D(ParallelModule):
|
|
r"""Embedding for 1D parallelism.
|
|
|
|
Args:
|
|
num_embeddings (int): number of embeddings.
|
|
embedding_dim (int): dimension of embedding.
|
|
padding_idx (int, optional): If specified, the entries at padding_idx do not contribute to the gradient;
|
|
therefore, the embedding vector at padding_idx is not updated during training,
|
|
i.e. it remains as a fixed “pad”, defaults to None.
|
|
dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None.
|
|
weight_initializer (:class:`typing.Callable`, optional):
|
|
he initializer of weight, defaults to normal initializer.
|
|
|
|
The ``args`` and ``kwargs`` used in :class:`torch.nn.functional.embedding` should contain:
|
|
::
|
|
|
|
max_norm (float, optional): If given, each embedding vector with norm larger than max_norm is
|
|
renormalized to have norm max_norm. Note: this will modify weight in-place.
|
|
norm_type (float, optional): The p of the p-norm to compute for the max_norm option. Default 2.
|
|
scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse
|
|
of frequency of the words in the mini-batch. Default False.
|
|
sparse (bool, optional): If True, gradient w.r.t. weight will be a sparse tensor. Default False.
|
|
|
|
More details about ``args`` and ``kwargs`` could be found in
|
|
`Embedding <https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding.html#torch.nn.functional.embedding>`_.
|
|
|
|
More details about ``initializer`` please refer to
|
|
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_
|
|
"""
|
|
|
|
def __init__(self,
|
|
num_embeddings: int,
|
|
embedding_dim: int,
|
|
padding_idx: int = None,
|
|
dtype: torch.dtype = None,
|
|
device: torch.device = None,
|
|
process_group: ProcessGroup = None,
|
|
weight_initializer: Callable = init.normal_(),
|
|
*args,
|
|
**kwargs):
|
|
super().__init__()
|
|
|
|
self.num_embeddings = num_embeddings
|
|
self.embed_dim = embedding_dim
|
|
self.process_group = process_group
|
|
self.num_partitions = dist.get_world_size(process_group)
|
|
self.embed_dim_per_partition = divide(embedding_dim, self.num_partitions)
|
|
|
|
self.padding_idx = padding_idx
|
|
self.embed_args = args
|
|
self.embed_kwargs = kwargs
|
|
# self.gather_output = gather_output
|
|
|
|
if device is None:
|
|
device = get_current_device()
|
|
|
|
self.weight = Parameter(torch.empty((num_embeddings, self.embed_dim_per_partition), device=device, dtype=dtype))
|
|
|
|
# offset the seed with randomizer index and rank
|
|
seed = torch.random.initial_seed()
|
|
self.randomizer = create_randomizer_with_offset(seed, process_group=self.process_group)
|
|
|
|
with self.randomizer.fork_rng(enable_cpu=True):
|
|
self.reset_parameters(weight_initializer)
|
|
|
|
@staticmethod
|
|
def from_native_module(module: nn.Embedding,
|
|
process_group: Union[ProcessGroup, List[ProcessGroup]] = None) -> "Embedding1D":
|
|
r"""
|
|
Build a 1D parallelized Embedding from a native nn.Embedding module.
|
|
"""
|
|
# get the attributes
|
|
num_embedding = module.num_embeddings
|
|
embedding_dim = module.embedding_dim
|
|
padding_idx = module.padding_idx
|
|
max_norm = module.max_norm
|
|
norm_type = module.norm_type
|
|
scale_grad_by_freq = module.scale_grad_by_freq
|
|
sparse = module.sparse
|
|
dtype = module.weight.dtype
|
|
device = module.weight.device
|
|
|
|
# sparse is not support yet
|
|
if sparse:
|
|
raise NotImplementedError("The Embedding1D module does not support sparse embedding yet.")
|
|
|
|
embedding = Embedding1D(num_embeddings=num_embedding,
|
|
embedding_dim=embedding_dim,
|
|
padding_idx=padding_idx,
|
|
process_group=process_group,
|
|
dtype=dtype,
|
|
device=device,
|
|
max_norm=max_norm,
|
|
norm_type=norm_type,
|
|
scale_grad_by_freq=scale_grad_by_freq,
|
|
sparse=sparse)
|
|
|
|
# copy the weight
|
|
with torch.no_grad():
|
|
sharded_weight = shard_colwise(module.weight.data, process_group)
|
|
embedding.weight.copy_(sharded_weight)
|
|
|
|
return embedding
|
|
|
|
def reset_parameters(self, weight_initializer) -> None:
|
|
fan_in, fan_out = self.num_embeddings, self.embed_dim
|
|
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
|
|
self._fill_padding_idx_with_zero()
|
|
|
|
def _fill_padding_idx_with_zero(self) -> None:
|
|
if self.padding_idx is not None:
|
|
with torch.no_grad():
|
|
self.weight[self.padding_idx].fill_(0)
|
|
|
|
def forward(self, input_: Tensor) -> Tensor:
|
|
output_parallel = F.embedding(input_, self.weight, self.padding_idx, *self.embed_args, **self.embed_kwargs)
|
|
output = gather_forward_split_backward(output_parallel, dim=-1, process_group=self.process_group)
|
|
|
|
return output
|