You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/applications/Chat/inference/utils.py

210 lines
7.8 KiB

import json
import re
from threading import Lock
from typing import Any, Callable, Generator, List, Optional
import jieba
import torch
import torch.distributed as dist
import torch.nn as nn
from pydantic import BaseModel, Field
try:
from transformers.generation_logits_process import (
LogitsProcessorList,
TemperatureLogitsWarper,
TopKLogitsWarper,
TopPLogitsWarper,
)
except ImportError:
from transformers.generation import LogitsProcessorList, TemperatureLogitsWarper, TopKLogitsWarper, TopPLogitsWarper
def prepare_logits_processor(
top_k: Optional[int] = None, top_p: Optional[float] = None, temperature: Optional[float] = None
) -> LogitsProcessorList:
processor_list = LogitsProcessorList()
if temperature is not None and temperature != 1.0:
processor_list.append(TemperatureLogitsWarper(temperature))
if top_k is not None and top_k != 0:
processor_list.append(TopKLogitsWarper(top_k))
if top_p is not None and top_p < 1.0:
processor_list.append(TopPLogitsWarper(top_p))
return processor_list
def _is_sequence_finished(unfinished_sequences: torch.Tensor) -> bool:
if dist.is_initialized() and dist.get_world_size() > 1:
# consider DP
unfinished_sequences = unfinished_sequences.clone()
dist.all_reduce(unfinished_sequences)
return unfinished_sequences.max() == 0
def sample_streamingly(
model: nn.Module,
input_ids: torch.Tensor,
max_generate_tokens: int,
early_stopping: bool = False,
eos_token_id: Optional[int] = None,
pad_token_id: Optional[int] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
prepare_inputs_fn: Optional[Callable[[torch.Tensor, Any], dict]] = None,
update_model_kwargs_fn: Optional[Callable[[dict, Any], dict]] = None,
**model_kwargs,
) -> Generator:
logits_processor = prepare_logits_processor(top_k, top_p, temperature)
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
for _ in range(max_generate_tokens):
model_inputs = (
prepare_inputs_fn(input_ids, **model_kwargs) if prepare_inputs_fn is not None else {"input_ids": input_ids}
)
outputs = model(**model_inputs)
next_token_logits = outputs["logits"][:, -1, :]
# pre-process distribution
next_token_logits = logits_processor(input_ids, next_token_logits)
# sample
probs = torch.softmax(next_token_logits, dim=-1, dtype=torch.float)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
# finished sentences should have their next token be a padding token
if eos_token_id is not None:
if pad_token_id is None:
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
yield next_tokens
# update generated ids, model inputs for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
if update_model_kwargs_fn is not None:
model_kwargs = update_model_kwargs_fn(outputs, **model_kwargs)
# if eos_token was found in one sentence, set sentence to finished
if eos_token_id is not None:
unfinished_sequences = unfinished_sequences.mul((next_tokens != eos_token_id).long())
# stop when each sentence is finished if early_stopping=True
if early_stopping and _is_sequence_finished(unfinished_sequences):
break
def update_model_kwargs_fn(outputs: dict, **model_kwargs) -> dict:
if "past_key_values" in outputs:
model_kwargs["past"] = outputs["past_key_values"]
else:
model_kwargs["past"] = None
# update token_type_ids with last value
if "token_type_ids" in model_kwargs:
token_type_ids = model_kwargs["token_type_ids"]
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
# update attention mask
if "attention_mask" in model_kwargs:
attention_mask = model_kwargs["attention_mask"]
model_kwargs["attention_mask"] = torch.cat(
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
)
return model_kwargs
class Dialogue(BaseModel):
instruction: str = Field(min_length=1, example="Count up from 1 to 500.")
response: str = Field(example="")
def _format_dialogue(instruction: str, response: str = ""):
return f"\n\n### Instruction:\n{instruction}\n\n### Response:\n{response}"
STOP_PAT = re.compile(r"(###|instruction:).*", flags=(re.I | re.S))
class ChatPromptProcessor:
SAFE_RESPONSE = "The input/response contains inappropriate content, please rephrase your prompt."
def __init__(self, tokenizer, context: str, max_len: int = 2048, censored_words: List[str] = []):
self.tokenizer = tokenizer
self.context = context
self.max_len = max_len
self.censored_words = set([word.lower() for word in censored_words])
# These will be initialized after the first call of preprocess_prompt()
self.context_len: Optional[int] = None
self.dialogue_placeholder_len: Optional[int] = None
def preprocess_prompt(self, history: List[Dialogue], max_new_tokens: int) -> str:
if self.context_len is None:
self.context_len = len(self.tokenizer(self.context)["input_ids"])
if self.dialogue_placeholder_len is None:
self.dialogue_placeholder_len = len(
self.tokenizer(_format_dialogue(""), add_special_tokens=False)["input_ids"]
)
prompt = self.context
# the last dialogue must be in the prompt
last_dialogue = history.pop()
# the response of the last dialogue is empty
assert last_dialogue.response == ""
if (
len(self.tokenizer(_format_dialogue(last_dialogue.instruction), add_special_tokens=False)["input_ids"])
+ max_new_tokens
+ self.context_len
>= self.max_len
):
# to avoid truncate placeholder, apply truncate to the original instruction
instruction_truncated = self.tokenizer(
last_dialogue.instruction,
add_special_tokens=False,
truncation=True,
max_length=(self.max_len - max_new_tokens - self.context_len - self.dialogue_placeholder_len),
)["input_ids"]
instruction_truncated = self.tokenizer.decode(instruction_truncated).lstrip()
prompt += _format_dialogue(instruction_truncated)
return prompt
res_len = self.max_len - max_new_tokens - len(self.tokenizer(prompt)["input_ids"])
rows = []
for dialogue in history[::-1]:
text = _format_dialogue(dialogue.instruction, dialogue.response)
cur_len = len(self.tokenizer(text, add_special_tokens=False)["input_ids"])
if res_len - cur_len < 0:
break
res_len -= cur_len
rows.insert(0, text)
prompt += "".join(rows) + _format_dialogue(last_dialogue.instruction)
return prompt
def postprocess_output(self, output: str) -> str:
output = STOP_PAT.sub("", output)
return output.strip()
def has_censored_words(self, text: str) -> bool:
if len(self.censored_words) == 0:
return False
intersection = set(jieba.cut(text.lower())) & self.censored_words
return len(intersection) > 0
class LockedIterator:
def __init__(self, it, lock: Lock) -> None:
self.lock = lock
self.it = iter(it)
def __iter__(self):
return self
def __next__(self):
with self.lock:
return next(self.it)
def load_json(path: str):
with open(path) as f:
return json.load(f)