ColossalAI/tests/test_zero_data_parallel/config.py

92 lines
1.7 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import os
from pathlib import Path
BATCH_SIZE = 128
IMG_SIZE = 224
NUM_CLS = 1000
# resnet 18
model = dict(
type='VanillaResNet',
block_type='ResNetBottleneck',
layers=[3, 4, 6, 3],
num_cls=NUM_CLS
)
train_data = dict(
dataset=dict(
type='CIFAR10Dataset',
root=Path(os.environ['DATA']),
transform_pipeline=[
dict(type='RandomResizedCrop', size=IMG_SIZE),
dict(type='RandomHorizontalFlip'),
dict(type='ToTensor'),
dict(type='Normalize', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
]
),
dataloader=dict(
batch_size=64,
pin_memory=True,
num_workers=4,
sampler=dict(
type='DataParallelSampler',
shuffle=True,
)
)
)
test_data = dict(
dataset=dict(
type='CIFAR10Dataset',
root=Path(os.environ['DATA']),
train=False,
transform_pipeline=[
dict(type='Resize', size=(IMG_SIZE, IMG_SIZE)),
dict(type='ToTensor'),
dict(type='Normalize', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
]
),
dataloader=dict(
batch_size=BATCH_SIZE,
pin_memory=True,
num_workers=4,
)
)
dist_initializer = [
dict(type='DataParallelInitializer'),
]
parallelization = dict(
pipeline=1,
tensor=1,
sequence=-1
)
optimizer = dict(
type='Adam',
lr=0.01
)
loss = dict(
type='CrossEntropyLoss'
)
trainer = dict(
max_epochs=5,
max_iters=1000
)
amp = dict(
fp16=None,
)
level = 2
parallel = dict(
pipeline=dict(size=1),
tensor=dict(size=1, mode=None)
)