ColossalAI/colossalai/zero/gemini/gemini_optimizer.py

825 lines
36 KiB
Python

# this code is inspired by the DeepSpeed library and implemented with our own design from scratch
import copy
import math
import warnings
from typing import Any, Dict, Iterator, OrderedDict, Set, Tuple, Union
import torch
import torch.distributed as dist
from packaging.version import Version
from torch.distributed import ProcessGroup
from torch.nn import Parameter
from torch.optim import Optimizer
from colossalai.accelerator import get_accelerator
from colossalai.amp.naive_amp.mixed_precision_mixin import BF16MixedPrecisionMixin, FP16MixedPrecisionMixin
from colossalai.checkpoint_io.utils import StateDictSharder, gather_distributed_param
from colossalai.interface import OptimizerWrapper
from colossalai.logging import get_dist_logger
from colossalai.nn.optimizer import CPUAdam, FusedAdam, HybridAdam
from colossalai.tensor.d_tensor import (
distribute_tensor,
distribute_tensor_with_customization,
get_device_mesh,
get_sharding_spec,
init_as_dtensor,
init_tensor_as_customization_distributed,
is_customized_distributed_tensor,
is_distributed_tensor,
)
from colossalai.utils import disposable, is_ddp_ignored
from .chunk import Chunk, ChunkManager
from .gemini_ddp import GeminiDDP
__all__ = ["GeminiOptimizer", "GeminiAdamOptimizer"]
_AVAIL_OPTIM_LIST = {FusedAdam, CPUAdam, HybridAdam}
class GeminiFP16MixedPrecisionMixin(FP16MixedPrecisionMixin):
def __init__(
self,
module: GeminiDDP,
initial_scale: float = 2**16,
min_scale: float = 1,
growth_factor: float = 2,
backoff_factor: float = 0.5,
growth_interval: int = 1000,
hysteresis: int = 2,
max_scale: float = 2**32,
) -> None:
super().__init__(
initial_scale, min_scale, growth_factor, backoff_factor, growth_interval, hysteresis, max_scale
)
self.module = module
def check_local_overflow(self) -> bool:
return self.module.overflow_counter > 0
def pre_zero_grad(self) -> None:
self.module.overflow_counter = 0
class GeminiOptimizer(OptimizerWrapper):
"""A wrapper for optimizer. ``GeminiDDP`` and ``GeminiOptimizer`` implement Zero Redundancy Optimizer (ZeRO state-3).
Note:
You must use ``GeminiDDP`` with ``GeminiOptimizer``.
Note:
Make sure you set ``placement_policy`` of ``GeminiManager`` to `"auto"`,
if you set ``gpu_margin_mem_ratio > 0``.
Args:
optim (Optimizer): An Optimizer instance.
module (GeminiDDP): A ``GeminiDDP`` instance.
gpu_margin_mem_ratio (float, optional): The ratio of GPU remaining memory (after the first forward-backward)
which will be used when using hybrid CPU optimizer.
This argument is meaningless when `placement_policy` of `GeminiManager` is not "auto".
Defaults to 0.0.
initial_scale (float, optional): Initial scale used by DynamicGradScaler. Defaults to 2**32.
min_scale (float, optional): Min scale used by DynamicGradScaler. Defaults to 1.
growth_factor (float, optional): Growth_factor used by DynamicGradScaler. Defaults to 2.
backoff_factor (float, optional): Backoff_factor used by DynamicGradScaler. Defaults to 0.5.
growth_interval (float, optional): Growth_interval used by DynamicGradScaler. Defaults to 1000.
hysteresis (float, optional): Hysteresis used by DynamicGradScaler. Defaults to 2.
max_scale (int, optional): Max_scale used by DynamicGradScaler. Defaults to 2**32.
max_norm (float, optional): The norm value used to clip gradient. Defaults to 0.0.
norm_type (float, optional): The type of norm used for gradient clipping. Currently, only L2-norm (norm_type=2.0)
is supported in GeminiOptimizer. Defaults to 2.0.
verbose (bool, optional): Whether to print verbose information, including grad overflow info. Defaults to False.
"""
def __init__(
self,
optim: Optimizer,
module: GeminiDDP,
gpu_margin_mem_ratio: float = 0.0,
initial_scale: float = 2**32,
min_scale: float = 1,
growth_factor: float = 2,
backoff_factor: float = 0.5,
growth_interval: int = 1000,
hysteresis: int = 2,
max_scale: float = 2**32,
max_norm: float = 0.0,
norm_type: float = 2.0,
tp_group: ProcessGroup = None,
optimizer_params_info=None,
verbose: bool = False,
**defaults: Any,
):
super().__init__(optim)
assert isinstance(module, GeminiDDP)
assert type(optim) in _AVAIL_OPTIM_LIST, (
"You should use an optimizer in the available list:\n" f"{_AVAIL_OPTIM_LIST}"
)
self.module = module
self.gemini_manager = module.gemini_manager
self.chunk_manager: ChunkManager = self.gemini_manager.chunk_manager
self.param_to_range: Dict[Parameter, Tuple[int, int]] = dict()
self.param_to_chunk16: Dict[Parameter, Chunk] = dict()
self.chunk16_set: Set[Chunk] = set()
self.clipping_flag = max_norm > 0.0
self.max_norm = max_norm
self.tp_group = tp_group
self.optimizer_params_info = optimizer_params_info
self.tp_size = dist.get_world_size(tp_group) if tp_group is not None else 1
self.tp_rank = dist.get_rank(tp_group) if tp_group is not None else 0
self.verbose = verbose
self.param_groups_backup = list()
# Mapping from integer id to real/fake param tensor, used for checkpointing.
self.id_to_real_params: Dict[int, Parameter] = dict()
self.id_to_fake_params: Dict[int, Parameter] = dict()
if self.clipping_flag:
assert norm_type == 2.0, "GeminiOptimizer only supports L2 norm now"
ddp_param_list = []
for name, param in module.named_parameters():
if is_ddp_ignored(param):
if param.requires_grad:
warnings.warn(
f"Parameter `{name}` is ignored by DDP but requires gradient! "
"You should handle its optimizer update by yourself!"
)
else:
ddp_param_list.append(param)
for p in ddp_param_list:
chunk_16 = self.chunk_manager.get_chunk(p)
if chunk_16 not in self.chunk16_set:
chunk_16.l2_norm_flag = self.clipping_flag
self.chunk16_set.add(chunk_16)
self.__init__optimizer()
if module.mixed_precision is torch.float16:
self.mix_precision_mixin = GeminiFP16MixedPrecisionMixin(
module,
initial_scale=initial_scale,
min_scale=min_scale,
growth_factor=growth_factor,
backoff_factor=backoff_factor,
growth_interval=growth_interval,
hysteresis=hysteresis,
max_scale=max_scale,
)
elif module.mixed_precision is torch.bfloat16:
self.mix_precision_mixin = BF16MixedPrecisionMixin()
else:
raise RuntimeError(f"Unsupported mixed precision type: {module.mixed_precision}")
self._logger = get_dist_logger()
self.gpu_margin_mem_ratio: float = float(gpu_margin_mem_ratio)
assert 0.0 <= self.gpu_margin_mem_ratio <= 1.0, f"gpu_margin_mem_ratio must >=0.0 and <=1.0"
# Only move fp32 shards from CPU to GPU when user allows and inner optimizer is valid
# Inner optimizer must support optimizing hybrid (CPU and CUDA) tensors,
# and it must set `num_fp32_shards_per_param` correctly
self._should_move_fp32_params_h2d: bool = (
self.gemini_manager.is_cuda_margin_mem_avail
and self.gpu_margin_mem_ratio > 0.0
and getattr(optim, "num_fp32_shards_per_param", 0) >= 2
)
if self.gpu_margin_mem_ratio > 0.0 and not self.gemini_manager.is_cuda_margin_mem_avail:
self._logger.warning(f'gpu_margin_mem_ratio is meaningless when placement_policy is not "auto"', ranks=[0])
self._register_states = disposable(self._register_states_)
def _set_grad_ptr(self):
for group in self.param_groups:
for fake_param in group["params"]:
chunk16 = self.param_to_chunk16[fake_param]
begin, end = self.param_to_range[fake_param]
grad_chunk16 = chunk16 if self.module.reuse_fp16_chunk else chunk16.grad_chunk
fake_param.data = grad_chunk16.payload[begin:end]
fake_param.grad = fake_param.data
to_update_chunk = chunk16.paired_chunk if self.module.master_weights else chunk16
fake_param.data = to_update_chunk.payload[begin:end]
def _update_fp16_params(self):
none_tensor = torch.empty([0])
for group in self.param_groups:
for fake_param in group["params"]:
assert fake_param.grad is None
fake_param.data = none_tensor.to(fake_param.device)
for chunk16 in self.chunk16_set:
chunk16.optim_update()
def _clear_global_norm(self) -> None:
for c16 in self.chunk16_set:
grad_chunk = c16 if self.module.reuse_fp16_chunk else c16.grad_chunk
grad_chunk.l2_norm = None
def _calc_global_norm(self) -> float:
norm_sqr: float = 0.0
group_to_norm = dict()
for c16 in self.chunk16_set:
grad_chunk = c16 if self.module.reuse_fp16_chunk else c16.grad_chunk
assert grad_chunk.l2_norm is not None
if grad_chunk.is_gathered:
norm_sqr += grad_chunk.l2_norm
else:
# this chunk is sharded, use communication to collect total norm
if grad_chunk.torch_pg not in group_to_norm:
group_to_norm[grad_chunk.torch_pg] = 0.0
group_to_norm[grad_chunk.torch_pg] += grad_chunk.l2_norm
grad_chunk.l2_norm = None # clear l2 norm
comm_buffer = torch.zeros(1, dtype=torch.float, device=get_accelerator().get_current_device())
for group, part_norm in group_to_norm.items():
comm_buffer.fill_(part_norm)
dist.all_reduce(comm_buffer, group=group)
norm_sqr += comm_buffer.item()
global_norm = math.sqrt(norm_sqr)
return global_norm
def _get_combined_scale(self):
div_scale = self.mix_precision_mixin.get_grad_div_scale()
if self.clipping_flag:
total_norm = self._calc_global_norm()
clip = ((total_norm / div_scale) + 1e-6) / self.max_norm
if clip > 1:
div_scale = clip * div_scale
return -1 if div_scale == 1.0 else div_scale
def zero_grad(self, *args, **kwargs):
self.mix_precision_mixin.pre_zero_grad()
return self.optim.zero_grad(set_to_none=True)
def step(self, *args, **kwargs):
if self.module.master_weights:
self._maybe_move_fp32_params()
self._set_grad_ptr()
if self.mix_precision_mixin.should_skip_step():
if self.verbose:
self._logger.info(f"Found overflow. Skip step")
self._clear_global_norm() # clear recorded norm
self.zero_grad() # reset all gradients
if self.module.reuse_fp16_chunk:
self._update_fp16_params()
return
# get combined scale. combined scale = loss scale * clipping norm
# so that gradient = gradient / combined scale
combined_scale = self._get_combined_scale()
ret = self.optim.step(div_scale=combined_scale, *args, **kwargs)
self._register_states()
self.zero_grad()
if self.module.master_weights:
self._update_fp16_params()
self.module.accumulating_grads = False
return ret
def clip_grad_norm(self, model: torch.nn.Module, max_norm: float, norm_type: float = 2.0):
raise NotImplementedError
def backward(self, loss: torch.Tensor):
loss = self.mix_precision_mixin.pre_backward(loss)
self.module.backward(loss)
def backward_by_grad(self, tensor: torch.Tensor, grad: torch.Tensor):
# This function is called except the last stage of pipeline parallel
# It receives the scaled grad from the previous rank
# No need to scale the grad again
# Need to unscale when optimizing
grad = self.mix_precision_mixin.pre_backward_by_grad(grad)
self.module.backward_by_grad(tensor, grad)
def _maybe_move_fp32_params(self):
if self._should_move_fp32_params_h2d:
self._should_move_fp32_params_h2d = False
available_cuda_margin_mem = self.gemini_manager.cuda_margin_mem * self.gpu_margin_mem_ratio
fp32_params_available_cuda_margin_mem = available_cuda_margin_mem / self.optim.num_fp32_shards_per_param
fp32_params_used_cuda_margin_mem = 0
for group in self.param_groups:
for fake_param in group["params"]:
chunk16 = self.param_to_chunk16[fake_param]
chunk32 = chunk16.paired_chunk
if chunk32.device_type == "cuda" or chunk32.device_type == "npu":
continue
if fp32_params_used_cuda_margin_mem + chunk32.payload_mem < fp32_params_available_cuda_margin_mem:
self.chunk_manager.move_chunk(chunk32, get_accelerator().get_current_device())
# stores grad now
self.chunk_manager.move_chunk(chunk16, get_accelerator().get_current_device())
self.module.set_chunk_grad_device(chunk16, get_accelerator().get_current_device())
fp32_params_used_cuda_margin_mem += chunk32.payload_mem
for group in self.param_groups:
for fake_param in group["params"]:
chunk16 = self.param_to_chunk16[fake_param]
chunk32 = chunk16.paired_chunk
if chunk32.device_type == "cuda" or chunk32.device_type == "npu":
state = self.optim.state[fake_param]
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(get_accelerator().get_current_device())
def _register_states_(self):
for group in self.optim.param_groups:
for p in group["params"]:
state = self.optim.state[p]
for val in state.values():
if isinstance(val, torch.Tensor):
self.chunk_manager.add_extern_static_tensor(val)
def __init__optimizer(self):
def get_range_pair(local_chunk: Chunk, local_param: Parameter):
param_info = local_chunk.tensors_info[local_param]
if local_chunk.keep_gathered:
return param_info.offset, param_info.end
begin = max(0, param_info.offset - local_chunk.shard_begin)
end = min(local_chunk.shard_size, param_info.end - local_chunk.shard_begin)
return begin, end
param_id = -1
for group in self.optim.param_groups:
fake_params_list = list()
group_backup = {k: v for k, v in group.items() if k != "params"}
group_ids = []
for param in group["params"]:
# Record the mapping of id to current param.
param_id += 1
self.id_to_real_params[param_id] = param
group_ids.append(param_id)
# If current param is controlled by current process, add it to fake_param.
if is_ddp_ignored(param):
continue
chunk16 = self.chunk_manager.get_chunk(param)
range_pair = get_range_pair(chunk16, param)
if range_pair[0] >= range_pair[1]:
continue
grad_device = self.module.grads_device[param]
fake_param = torch.nn.Parameter(torch.empty([0], device=grad_device))
self.param_to_chunk16[fake_param] = chunk16
self.param_to_range[fake_param] = range_pair
self.id_to_fake_params[param_id] = fake_param
fake_params_list.append(fake_param)
# Update self.optim.param_groups as well as backup group.
group["params"] = fake_params_list
group_backup["params"] = group_ids
self.param_groups_backup.append(group_backup)
def get_offsets(self, param_id: int) -> tuple:
"""
Args:
param_id(int): The id of parameter.
Returns:
chunk_offset(int): Offset of parameter inside the chunk.
shard_offset(int): Offset of its optimizer state shard
relative to the whole optimizer state.
shard_size(int): Length of parameter shard owned by current process.
"""
if param_id not in self.id_to_fake_params:
return -1, -1, -1
fake_param = self.id_to_fake_params[param_id]
chunk = self.param_to_chunk16[fake_param]
param = self.id_to_real_params[param_id]
param_info = chunk.tensors_info[param]
begin_in_chunk, end_in_chunk = self.param_to_range[fake_param]
chunk_offset = begin_in_chunk
if chunk.keep_gathered:
shard_offset = 0
else:
shard_offset = begin_in_chunk + chunk.shard_begin - param_info.offset
shard_size = end_in_chunk - begin_in_chunk
assert chunk_offset >= 0 and shard_offset >= 0
return chunk_offset, shard_offset, shard_size
def collect_states(self, param_id: int, only_rank_0: bool = True) -> dict:
"""
Args:
param_id (int): id of the parameter whose state is to be gathered at master rank.
only_rank_0(bool): if True, states will be collected only on master rank, otherwise collected on every rank.
Returns:
collected_states(dict): the gathered optimizer state of parameter with given id
if this method is called by master rank, otherwise an empty dict.
This method can work only when called by all processes simultaneously.
"""
# Get param & chunk & process group.
param = self.id_to_real_params[param_id]
fake_param = self.id_to_fake_params.get(param_id, None)
chunk = self.chunk_manager.get_chunk(param)
zero_group = chunk.torch_pg
rank = dist.get_rank(zero_group)
master_rank = 0
collected_states = {}
# Fetch names of states through all_gather.
local_state_names = None
if fake_param is not None:
local_state_names = list(self.optim.state[fake_param].keys())
gathered_state_names = [None for _ in range(dist.get_world_size(zero_group))]
dist.barrier()
dist.all_gather_object(gathered_state_names, local_state_names, zero_group)
state_names = None
for names in gathered_state_names:
if names is not None:
# Assume different devices share the same set of state names if they have.
state_names = copy.deepcopy(names)
break
# Directly return if this parameter doesn't have optimizer states.
# e.g. parameter freezed/layer dropped
if state_names is None:
return collected_states
# Boolean variable is_collector indicates that whether the current rank
# needs to gather the whole optimizer states.
# Only master rank is collector when only_rank_0 is True.
# Every rank is collector when only_rank_0 is False.
is_collector = (rank == master_rank) or (not only_rank_0)
# get tensor parallelism information
is_dtensor = is_distributed_tensor(param)
is_customized_distributed = is_customized_distributed_tensor(param)
shard_spec = get_sharding_spec(param) if is_dtensor else None
device_mesh = get_device_mesh(param) if is_dtensor else None
global_shape = self.optimizer_params_info["id2shape"][param_id]
# If the chunk is kept gathered,
# the parameters are treated the same as that of those in strict DDP during training.
# So states can be directly fetched from current device.
if chunk.keep_gathered:
assert param_id in self.id_to_fake_params
if is_collector:
states = self.optim.state[fake_param]
for state_name in state_names:
if state_name == "step":
# To keep aligned with pytorch, state 'step' is stored as a pytorch tensor with type float32.
collected_states[state_name] = torch.tensor(
states["step"], dtype=torch.float32, requires_grad=False
).cpu()
else:
state_tensor = states[state_name].detach().clone().to(torch.float32).cpu()
if is_dtensor:
state_tensor = torch.reshape(state_tensor, param.shape).to(param.device)
state_tensor = init_as_dtensor(
state_tensor,
device_mesh=device_mesh,
sharding_spec=shard_spec,
global_shape=global_shape,
)
elif is_customized_distributed:
state_tensor = torch.reshape(state_tensor, param.shape).to(param.device)
init_tensor_as_customization_distributed(
state_tensor, shard_fn=param.shard_fn, gather_fn=param.gather_fn
)
state_tensor = gather_distributed_param(state_tensor, keep_vars=False).cpu()
collected_states[state_name] = state_tensor.reshape(global_shape)
return collected_states
# Check whether the param with given id is managed by current process.
own_param = param_id in self.id_to_fake_params
# Collector gets prepared for state collecting.
if is_collector:
for state_name in state_names:
if state_name == "step":
# To keep aligned with pytorch, state 'step' is stored as a pytorch tensor with type float32.
collected_states[state_name] = torch.tensor(0.0, dtype=torch.float32, requires_grad=False).cpu()
else:
collected_states[state_name] = torch.zeros(
param.numel(), dtype=torch.float32, requires_grad=False
).cpu()
# Materials for gathering, including compacted state tensors, and the offset of shard inside each state.
compacted_states = self.pack_optimizer_states_to_tensor(param_id, state_names) if own_param else None
_, shard_offset, shard_size = self.get_offsets(param_id)
# Collectors gather state shards through all_gathering.
gathered_state_shards = [None for _ in range(dist.get_world_size(zero_group))]
dist.barrier()
dist.all_gather_object(gathered_state_shards, [compacted_states, shard_offset, shard_size], group=zero_group)
if is_collector:
for state_shard in gathered_state_shards:
compacted_states = state_shard[0]
shard_offset = state_shard[1]
shard_size = state_shard[2]
if compacted_states is None:
continue
self.load_from_compacted_states(
compacted_states, collected_states, state_names, shard_offset, shard_size
)
# Reshape tensors
if is_collector:
for state_name, state_tensor in collected_states.items():
if state_tensor.numel() == param.numel():
collected_states[state_name] = torch.reshape(state_tensor, param.shape)
if is_dtensor:
state_tensor = state_tensor.to(param.device)
state_tensor = init_as_dtensor(
state_tensor, sharding_spec=shard_spec, device_mesh=device_mesh, global_shape=global_shape
)
elif is_customized_distributed:
state_tensor = state_tensor.to(param.device)
init_tensor_as_customization_distributed(
state_tensor, shard_fn=param.shard_fn, gather_fn=param.gather_fn
)
state_tensor = gather_distributed_param(state_tensor, keep_vars=False).cpu()
return collected_states
def pack_optimizer_states_to_tensor(
self,
param_id: int,
state_names: list,
device: torch.device = get_accelerator().get_current_device(),
dtype: torch.dtype = torch.float32,
) -> torch.Tensor:
"""
With param id given, pack its optimizer states into a compact tensor and return.
"""
if param_id not in self.id_to_fake_params:
return None
fake_param = self.id_to_fake_params[param_id]
param_range = self.param_to_range[fake_param]
states = self.optim.state[fake_param]
shard_size = param_range[1] - param_range[0]
compacted_size = 0
for name in state_names:
if name == "step":
compacted_size += 1
else:
compacted_size += shard_size
compacted_states = torch.zeros(compacted_size, dtype=dtype, device=device, requires_grad=False)
next_state_offset = 0
for state_name, state_tensor in states.items():
# State 'step' needs special operation.
if state_name == "step":
if isinstance(state_tensor, torch.Tensor):
compacted_states[next_state_offset] = state_tensor[0].item()
else:
assert isinstance(state_tensor, int)
compacted_states[next_state_offset] = state_tensor
next_state_offset += 1
else:
assert state_tensor.numel() == shard_size
compacted_states[next_state_offset : next_state_offset + shard_size].copy_(state_tensor)
next_state_offset += shard_size
return compacted_states
def load_from_compacted_states(
self,
compacted_states: torch.Tensor,
collected_states: dict,
state_names: list,
shard_start: int,
shard_size: int,
):
"""
Given a tensor carrying compacted optimizer states,
update these states to collected_states.
"""
shard_end = shard_start + shard_size
next_state_offset = 0
for state_name in state_names:
if state_name == "step":
collected_states["step"].data = torch.tensor(
compacted_states[next_state_offset].item(), dtype=torch.float32, requires_grad=False
).cpu()
next_state_offset += 1
else:
target_segment = collected_states[state_name][shard_start:shard_end]
target_segment.copy_(compacted_states[next_state_offset : next_state_offset + shard_size])
next_state_offset += shard_size
def get_param_groups_for_saving(self) -> list:
"""
Return the param_groups in Pytorch format when saving to checkpoint.
"""
param_groups = [
{**group, "params": group_info["params"]}
for group, group_info in zip(self.optim.param_groups, self.param_groups_backup)
]
# To be compatible with pytorch checkpointing,
# store extra hyperparameters used by pytorch Adam optimizer.
torch_special_hyperparameters = {
"amsgrad": False,
"maximize": False,
"foreach": None,
"capturable": False,
"differentiable": False,
"fused": False,
}
for group in param_groups:
for k, v in torch_special_hyperparameters.items():
if k not in group:
group[k] = v
return param_groups
def state_dict(self, only_rank_0: bool = True) -> dict:
"""
Args:
only_rank_0 (bool): a boolean value indicating whether the state_dict is collected
only on rank 0, default to True.
Returns:
The complete state of the optimizer as a :class:`dict`.
It contains two entries:
* state - a dict holding current optimization state. Its content
differs between optimizer classes.
* param_groups - a list containing all parameter groups where each
parameter group is a dict.
Warning: This method will gather and return the whole optimizer state_dict,
so it should be called only when memory resources are abundant.
"""
state_dict = {}
state_dict["param_groups"] = self.get_param_groups_for_saving()
# Collect optimizer states.
state_dict["state"] = dict()
for param_id in self.id_to_real_params.keys():
dist.barrier()
state_dict["state"][param_id] = self.collect_states(param_id=param_id, only_rank_0=only_rank_0)
return state_dict
def load_param_groups(self, saved_param_groups: list):
"""
Load saved_param_groups into
self.param_groups and self.param_groups_backup
"""
self.param_groups_backup = copy.deepcopy(saved_param_groups)
# discard the older param_groups
self.optim.param_groups = []
for group in saved_param_groups:
fake_params_list = list()
updated_group = {k: v for k, v in group.items() if k != "params"}
for param_id in group["params"]:
if param_id not in self.id_to_fake_params:
continue
fake_param = self.id_to_fake_params[param_id]
fake_params_list.append(fake_param)
updated_group["params"] = fake_params_list
self.optim.param_groups.append(updated_group)
def load_single_param_states(self, param_id: int, saved_states: dict):
"""
Load saved optimizer states into parameter with given id.
"""
def cast(param, state_range, value, key=None):
"""
Make a copy of the needed segment of value and cast it to device of param.
"""
assert isinstance(value, torch.Tensor)
ret_val = value
if key == "step":
assert value.numel() == 1
ret_val = int(value.item())
else:
state_start, state_end = state_range
ret_val = torch.zeros(
state_end - state_start, dtype=torch.float32, device=param.device, requires_grad=False
)
if is_dtensor:
value = torch.reshape(value, global_shape)
value = distribute_tensor(value, sharding_spec=shard_spec, device_mesh=device_mesh)
elif is_customized_distributed:
value = torch.reshape(value, global_shape)
value = distribute_tensor_with_customization(value, real_param.shard_fn, real_param.gather_fn)
ret_val.copy_(value.flatten()[state_start:state_end])
return ret_val
assert param_id in self.id_to_fake_params
fake_param = self.id_to_fake_params[param_id]
_, state_offset, param_size = self.get_offsets(param_id)
state_range = (state_offset, state_offset + param_size)
# Copy states assigned to param (and cast tensors to appropriate types).
updated_states = dict()
# get tensor parallelism information
real_param = self.id_to_real_params[param_id]
is_dtensor = is_distributed_tensor(real_param)
is_customized_distributed = is_customized_distributed_tensor(real_param)
shard_spec = get_sharding_spec(real_param) if is_dtensor else None
device_mesh = get_device_mesh(real_param) if is_dtensor else None
global_shape = self.optimizer_params_info["id2shape"][param_id]
for k, v in saved_states.items():
updated_states[k] = cast(fake_param, state_range, v, k)
del v # clean loaded states
self.optim.state[fake_param].update(updated_states)
def load_param_states(self, param_states: dict):
"""Loads param states from a state_dict. The param_states can be complete or sharded.
During loading, filter out the part of states not considered by current process.
Args:
param_states (dict): A mapping from param_id to its states.
"""
for param_id, states in param_states.items():
if param_id in self.id_to_fake_params:
self.load_single_param_states(param_id, states)
def optimizer_loading_epilogue(self):
# Epilogue when loading state_dict to pytorch optimizer.
if Version(torch.__version__) >= Version("2.0.0"):
self.optim._patch_step_function() # To support multiprocessing pickle/unpickle
else:
self.optim._hook_for_profile() # To support multiprocessing pickle/unpickle.
self.optim.defaults.setdefault("differentiable", False)
def load_state_dict(self, state_dict: dict):
"""Loads optimizer state from complete optimizer state_dict.
During loading, filter out the part of states not considered by current process.
Args:
state_dict (dict): optimizer state. Should be an object returned
from a call to :meth:`state_dict`.
"""
assert "param_groups" in state_dict
assert "state" in state_dict
self.load_param_groups(state_dict["param_groups"])
self.load_param_states(state_dict["state"])
self.optimizer_loading_epilogue()
def state_shard(
self, prefix: str = "", max_shard_size: int = 1024, only_rank_0: bool = True
) -> Iterator[Tuple[OrderedDict, int]]:
"""Returns dictionaries containing shards of optimizer states one by one.
The max size of each dictionary shard is specified by ``max_shard_size``.
Args:
prefix (str, optional): the prefix for states. Default to ''.
max_shard_size (int, optional): max size of state dict shard (in MB). Defaults to 1024.
only_rank_0 (bool, optional): a boolean value indicating whether the state_dict is collected
only on rank 0, default to True.
Yields:
Iterator[OrderedDict]: A generator of state dict shard of optimizer states.
"""
sharder = StateDictSharder(max_shard_size)
for param_id in self.id_to_real_params.keys():
dist.barrier()
state = self.collect_states(param_id=param_id, only_rank_0=only_rank_0)
block, block_size = sharder.append_optim_state(param_id, state)
if block is not None:
yield block, block_size
yield sharder.current_block, sharder.current_block_size
def clip_grad_by_value(self, clip_value: float, *args, **kwargs) -> None:
raise NotImplementedError("Gemini does not support clip_grad_by_value")
def clip_grad_by_norm(
self,
max_norm: Union[float, int],
norm_type: Union[float, int] = 2,
error_if_nonfinite: bool = False,
*args,
**kwargs,
) -> torch.Tensor:
warnings.warn(f"Gemini controls grad clipping by itself, so you should not use clip_grad_by_norm")
class GeminiAdamOptimizer(GeminiOptimizer):
def __init__(self, model: torch.nn.Module, **defaults: Any) -> None:
optimizer = HybridAdam(model.parameters(), **defaults)
super().__init__(optimizer, model, **defaults)