ColossalAI/colossalai/inference/modeling/models/nopadding_baichuan.py

348 lines
14 KiB
Python

# This code is adapted from huggingface baichuan model: hhttps://huggingface.co/baichuan-inc/Baichuan2-13B-Base/blob/main/modeling_baichuan.py
import math
from typing import Optional, Tuple
import torch
import torch.nn as nn
from colossalai.inference.flash_decoding_utils import FDIntermTensors
from colossalai.kernel.kernel_loader import InferenceOpsLoader
from colossalai.kernel.triton import (
context_attention_unpadded,
copy_k_to_blocked_cache,
decoding_fused_rotary_embedding,
flash_decoding_attention,
rms_layernorm,
rotary_embedding,
)
from colossalai.logging import get_dist_logger
logger = get_dist_logger(__name__)
try:
from flash_attn import flash_attn_varlen_func
use_flash_attn2 = True
except ImportError:
use_flash_attn2 = False
logger.warning(f"flash_attn2 has not been installed yet, we will use triton flash attn instead.")
inference_ops = InferenceOpsLoader().load()
logger = get_dist_logger(__name__)
# alibi slopes calculation adapted from https://github.com/huggingface/transformers/blob/v4.36.0/src/transformers/models/bloom/modeling_bloom.py#L57
def get_alibi_slopes(num_heads: int, device: torch.device) -> torch.Tensor:
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
base = torch.tensor(2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), dtype=torch.float32, device=device)
powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32, device=device)
slopes = torch.pow(base, powers)
if closest_power_of_2 != num_heads:
extra_base = torch.tensor(
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), dtype=torch.float32, device=device
)
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, dtype=torch.int32, device=device)
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
return slopes
def baichuan_rmsnorm_forward(
self,
hidden_states: torch.Tensor,
norm_output: torch.Tensor,
residual: torch.Tensor = None,
use_cuda_kernel: bool = True,
):
# Used to address the issue of inconsistent epsilon variable names in baichuan2 7b and 13b.
if hasattr(self, "variance_epsilon"):
eps = self.variance_epsilon
elif hasattr(self, "epsilon"):
eps = self.epsilon
else:
TypeError(
"Currently, the variable name for the epsilon of baichuan7B/13B should be 'variance_epsilon' or 'epsilon'."
)
if use_cuda_kernel:
if residual is not None:
inference_ops.fused_add_rms_layernorm(hidden_states, residual, self.weight.data, eps)
return hidden_states, residual
if norm_output is None:
norm_output = torch.empty_like(hidden_states)
inference_ops.rms_layernorm(norm_output, hidden_states, self.weight.data, eps)
return norm_output, hidden_states
else:
return rms_layernorm(hidden_states, self.weight.data, eps, norm_output, residual)
class NopadBaichuanAttention(nn.Module):
def __init__(
self,
config,
attn_qproj_w: torch.Tensor = None,
attn_kproj_w: torch.Tensor = None,
attn_vproj_w: torch.Tensor = None,
attn_oproj_w: torch.Tensor = None,
):
"""This layer will replace the BaichuanAttention.
Args:
config (BaichuanConfig): Holding the Baichuan model config.
attn_qproj_w (torch.Tensor, optional): The transposed q_proj weight. Defaults to None.
attn_kproj_w (torch.Tensor, optional): The transposed k_proj weight. Defaults to None.
attn_vproj_w (torch.Tensor, optional): The transposed v_proj weight. Defaults to None.
attn_oproj_w (torch.Tensor, optional): The transposed o_proj weight. Defaults to None.
"""
super().__init__()
self.o_proj_weight = attn_oproj_w
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.alibi_slopes = None
self.use_alibi_attn = False
if self.hidden_size == 5120:
self.use_alibi_attn = True
self.alibi_slopes = get_alibi_slopes(self.num_heads, device=attn_qproj_w.device)
qkv_weight_list = [attn_qproj_w, attn_kproj_w, attn_vproj_w]
self.qkv_weight = torch.stack(qkv_weight_list, dim=0)
@staticmethod
def from_native_module(module: nn.Module, *args, **kwargs) -> "NopadBaichuanAttention":
"""Used for initialize the weight of NopadBaichuanAttention by origin BaichuanAttention.
Args:
module (nn.Module): The origin BaichuanAttention layer.
"""
config = module.config
q_proj_w, k_proj_w, v_proj_w = module.W_pack.weight.view((3, module.hidden_size, module.hidden_size))
attn_qproj_w = q_proj_w.transpose(0, 1)
attn_kproj_w = k_proj_w.transpose(0, 1)
attn_vproj_w = v_proj_w.transpose(0, 1)
attn_oproj_w = module.o_proj.weight.transpose(0, 1)
attn_layer = NopadBaichuanAttention(
config=config,
attn_qproj_w=attn_qproj_w,
attn_kproj_w=attn_kproj_w,
attn_vproj_w=attn_vproj_w,
attn_oproj_w=attn_oproj_w,
)
return attn_layer
def forward(
self,
hidden_states: torch.Tensor,
block_tables: torch.Tensor,
k_cache: torch.Tensor,
v_cache: torch.Tensor,
sequence_lengths: torch.Tensor,
cos_sin: Tuple[torch.Tensor],
fd_inter_tensor: FDIntermTensors,
is_prompts: bool = True,
is_verifier: bool = False,
tokens_to_verify: int = None,
kv_seq_len: int = 0,
output_tensor: torch.Tensor = None,
sm_scale: int = None,
use_cuda_kernel: bool = True,
cu_seqlens: torch.Tensor = None,
high_precision: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
Args:
hidden_states (torch.Tensor): input to the layer of shape [token_num, embed_dim].
block_tables (torch.Tensor): A 2D tensor of shape [batch_size, max_blocks_per_sequence],
storing mapping of token_position_id -> block_id.
k_cache (torch.Tensor): It holds the GPU memory for the key cache.
v_cache (torch.Tensor): It holds the GPU memory for the key cache.
sequence_lengths (torch.Tensor, optional): Holding the sequence length of each sequence.
cos_sin (Tuple[torch.Tensor], optional): Holding cos and sin.
fd_inter_tensor (FDIntermTensors, optional): Holding tensors used for
storing intermediate values in flash-decoding.
is_prompts (bool, optional): Whether the current inference process is in the context input phase. Defaults to True.
kv_seq_len (int, optional): The max sequence length of input sequences. Defaults to 0.
output_tensor (torch.Tensor, optional): The mid tensor holds the output of attention. Defaults to None.
sm_scale (int, optional): Used for flash attention. Defaults to None.
use_cuda_kernel: (bool, optional): Whether to use cuda kernel. Defaults to True.
cu_seqlens(torch.Tensor, optional): Holding the cumulative sum of sequence length.
high_precision(Optional[bool]): Whether to use float32 for underlying calculations of float16 data to achieve higher precision, defaults to False.
"""
token_nums = hidden_states.size(0)
# fused qkv
hidden_states = hidden_states.expand(3, -1, -1)
query_states, key_states, value_states = (
torch.bmm(hidden_states, self.qkv_weight).view(3, token_nums, self.num_heads, self.head_dim).unbind(0)
)
block_size = k_cache.size(-2)
if is_prompts:
if (
not is_verifier
and use_cuda_kernel
and query_states.dtype != torch.float32
and use_flash_attn2
and not self.use_alibi_attn
):
# flash attn 2 currently only supports FP16/BF16.
inference_ops.rotary_embedding(query_states, key_states, cos_sin[0], cos_sin[1], high_precision)
inference_ops.context_kv_cache_memcpy(
key_states, value_states, k_cache, v_cache, sequence_lengths, cu_seqlens, block_tables, kv_seq_len
)
attn_output = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens,
cu_seqlens_k=cu_seqlens,
max_seqlen_q=kv_seq_len,
max_seqlen_k=kv_seq_len,
dropout_p=0.0,
softmax_scale=sm_scale,
causal=True,
)
attn_output = attn_output.view(token_nums, -1)
else:
if not self.use_alibi_attn:
rotary_embedding(query_states, key_states, cos_sin[0], cos_sin[1])
attn_output = context_attention_unpadded(
q=query_states,
k=key_states,
v=value_states,
k_cache=k_cache,
v_cache=v_cache,
context_lengths=sequence_lengths,
block_tables=block_tables,
block_size=block_size,
output=output_tensor,
alibi_slopes=self.alibi_slopes,
max_seq_len=kv_seq_len,
sm_scale=sm_scale,
)
else:
q_len = tokens_to_verify + 1 if is_verifier else 1
if use_cuda_kernel:
if not self.use_alibi_attn:
inference_ops.rotary_embedding_and_cache_copy(
query_states,
key_states,
value_states,
cos_sin[0],
cos_sin[1],
k_cache,
v_cache,
sequence_lengths,
block_tables,
high_precision,
)
else:
inference_ops.decode_kv_cache_memcpy(
key_states, value_states, k_cache, v_cache, sequence_lengths, block_tables
)
else:
if not is_verifier and not self.use_alibi_attn:
decoding_fused_rotary_embedding(
query_states,
key_states,
value_states,
cos_sin[0],
cos_sin[1],
k_cache,
v_cache,
block_tables,
sequence_lengths,
)
else:
if not self.use_alibi_attn:
rotary_embedding(query_states, key_states, cos_sin[0], cos_sin[1])
copy_k_to_blocked_cache(
key_states, k_cache, kv_lengths=sequence_lengths, block_tables=block_tables, n=q_len
)
copy_k_to_blocked_cache(
value_states, v_cache, kv_lengths=sequence_lengths, block_tables=block_tables, n=q_len
)
attn_output = flash_decoding_attention(
q=query_states,
k_cache=k_cache,
v_cache=v_cache,
kv_seq_len=sequence_lengths,
block_tables=block_tables,
block_size=block_size,
max_seq_len_in_batch=kv_seq_len,
output=output_tensor,
mid_output=fd_inter_tensor.mid_output,
mid_output_lse=fd_inter_tensor.mid_output_lse,
alibi_slopes=self.alibi_slopes,
sm_scale=sm_scale,
q_len=q_len,
)
attn_output = attn_output.view(-1, self.hidden_size)
attn_output = torch.mm(attn_output, self.o_proj_weight)
return attn_output
# NOTE This will cause difference as out length increases.
class NopadBaichuanMLP(nn.Module):
def __init__(
self,
mlp_gproj_w: torch.Tensor = None,
mlp_uproj_w: torch.Tensor = None,
mlp_dproj_w: torch.Tensor = None,
):
"""This layer will replace the BaichuanAttention.
Args:
mlp_gproj_w (torch.Tensor, optional): The transposed gate_proj weight. Defaults to None.
mlp_uproj_w (torch.Tensor, optional): The transposed up_proj weight. Defaults to None.
mlp_dproj_w (torch.Tensor, optional): The transposed down_proj weight. Defaults to None.
"""
super().__init__()
self.gate_up_weight = torch.stack([mlp_gproj_w, mlp_uproj_w], dim=0)
self.down_proj_weight = mlp_dproj_w
@staticmethod
def from_native_module(module: nn.Module, *args, **kwargs) -> nn.Module:
"""Used for initialize the weight of NopadBaichuanMLP by origin MLP(Baichuan).
Args:
module (nn.Module): The origin MLP(Baichuan) layer.
"""
mlp_gproj_w = module.gate_proj.weight.transpose(0, 1)
mlp_uproj_w = module.up_proj.weight.transpose(0, 1)
mlp_dproj_w = module.down_proj.weight.transpose(0, 1)
mlp_layer = NopadBaichuanMLP(
mlp_gproj_w=mlp_gproj_w,
mlp_uproj_w=mlp_uproj_w,
mlp_dproj_w=mlp_dproj_w,
)
return mlp_layer
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
"""
Args:
hidden_states (torch.Tensor): input to the layer of shape [token_num, embed_dim].
"""
hidden_states = hidden_states.expand(2, -1, -1)
gate_up_proj_out = torch.bmm(hidden_states, self.gate_up_weight)
act_out = inference_ops.silu_and_mul(gate_up_proj_out)
return torch.mm(act_out, self.down_proj_weight)