ColossalAI/examples/tutorial/hybrid_parallel
Hongxin Liu b5f9e37c70
[legacy] clean up legacy code (#4743)
* [legacy] remove outdated codes of pipeline (#4692)

* [legacy] remove cli of benchmark and update optim (#4690)

* [legacy] remove cli of benchmark and update optim

* [doc] fix cli doc test

* [legacy] fix engine clip grad norm

* [legacy] remove outdated colo tensor (#4694)

* [legacy] remove outdated colo tensor

* [test] fix test import

* [legacy] move outdated zero to legacy (#4696)

* [legacy] clean up utils (#4700)

* [legacy] clean up utils

* [example] update examples

* [legacy] clean up amp

* [legacy] fix amp module

* [legacy] clean up gpc (#4742)

* [legacy] clean up context

* [legacy] clean core, constants and global vars

* [legacy] refactor initialize

* [example] fix examples ci

* [example] fix examples ci

* [legacy] fix tests

* [example] fix gpt example

* [example] fix examples ci

* [devops] fix ci installation

* [example] fix examples ci
2023-09-18 16:31:06 +08:00
..
README.md [example] updated the hybrid parallel tutorial (#2444) 2023-01-11 15:17:17 +08:00
config.py [legacy] clean up legacy code (#4743) 2023-09-18 16:31:06 +08:00
requirements.txt [example] updated the hybrid parallel tutorial (#2444) 2023-01-11 15:17:17 +08:00
test_ci.sh [legacy] move communication and nn to legacy and refactor logger (#4671) 2023-09-11 16:24:28 +08:00
train.py [legacy] clean up legacy code (#4743) 2023-09-18 16:31:06 +08:00

README.md

Multi-dimensional Parallelism with Colossal-AI

Table of contents

📚 Overview

This example lets you to quickly try out the hybrid parallelism provided by Colossal-AI. You can change the parameters below to try out different settings in the config.py.

# parallel setting
TENSOR_PARALLEL_SIZE = 2
TENSOR_PARALLEL_MODE = '1d'

parallel = dict(
    pipeline=2,
    tensor=dict(mode=TENSOR_PARALLEL_MODE, size=TENSOR_PARALLEL_SIZE),
)

🚀 Quick Start

  1. Install PyTorch

  2. Install the dependencies.

pip install -r requirements.txt
  1. Run the training scripts with synthetic data.
colossalai run --nproc_per_node 4 train.py --config config.py
  1. Modify the config file to play with different types of tensor parallelism, for example, change tensor parallel size to be 4 and mode to be 2d and run on 8 GPUs.