mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
129 lines
5.0 KiB
129 lines
5.0 KiB
import argparse
|
|
import os
|
|
import time
|
|
|
|
import torch
|
|
from torch.profiler import ProfilerActivity, profile, record_function
|
|
from transformers import LlamaForCausalLM, LlamaTokenizer
|
|
|
|
import colossalai
|
|
from colossalai.inference.tensor_parallel.engine import TPInferEngine
|
|
from colossalai.logging import disable_existing_loggers
|
|
from colossalai.shardformer import ShardConfig
|
|
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
|
|
|
|
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'
|
|
|
|
|
|
def init_to_get_rotary(self, base=10000):
|
|
self.config.head_dim_ = self.config.hidden_size // self.config.num_attention_heads
|
|
if not hasattr(self.config, "rope_scaling"):
|
|
rope_scaling_factor = 1.0
|
|
else:
|
|
rope_scaling_factor = self.config.rope_scaling.factor if self.config.rope_scaling is not None else 1.0
|
|
if hasattr(self.config, "max_sequence_length"):
|
|
max_seq_len = self.config.max_sequence_length
|
|
elif hasattr(self.config, "max_position_embeddings"):
|
|
max_seq_len = self.config.max_position_embeddings * rope_scaling_factor
|
|
else:
|
|
max_seq_len = 2048 * rope_scaling_factor
|
|
base = float(base)
|
|
inv_freq = 1.0 / (base**(torch.arange(0, self.config.head_dim_, 2, device="cpu", dtype=torch.float32) /
|
|
self.config.head_dim_))
|
|
t = torch.arange(max_seq_len + 1024 * 64, device="cpu", dtype=torch.float32) / rope_scaling_factor
|
|
freqs = torch.outer(t, inv_freq)
|
|
|
|
self._cos_cached = torch.cos(freqs).to(torch.float16).cuda()
|
|
self._sin_cached = torch.sin(freqs).to(torch.float16).cuda()
|
|
return
|
|
|
|
|
|
def print_perf_stats(latency_set, config, bs, warmup=3):
|
|
# trim warmup queries
|
|
latency_set = list(latency_set)
|
|
latency_set = latency_set[warmup:]
|
|
count = len(latency_set)
|
|
|
|
if count > 0:
|
|
latency_set.sort()
|
|
avg = sum(latency_set) / count
|
|
num_layers = getattr(config, "num_layers", config.num_hidden_layers)
|
|
num_parameters = num_layers * config.hidden_size * config.hidden_size * 12
|
|
num_bytes = 2
|
|
|
|
print("Avg Per Token Latency: {0:8.2f} ms".format(avg * 1000))
|
|
print("Avg BW: {0:8.2f} GB/s".format(1 / avg * num_parameters * num_bytes / 1e9))
|
|
print("Avg flops: {0:8.2f} TFlops/s".format(1 / avg * num_parameters * num_bytes * bs / 1e12))
|
|
|
|
|
|
def run_llama_test(args):
|
|
llama_model_path = args.path
|
|
max_batch_size = args.batch_size
|
|
max_input_len = args.input_len
|
|
max_output_len = args.output_len
|
|
|
|
tokenizer = LlamaTokenizer.from_pretrained(llama_model_path)
|
|
tokenizer.pad_token_id = tokenizer.unk_token_id
|
|
model = LlamaForCausalLM.from_pretrained(llama_model_path, pad_token_id=tokenizer.eos_token_id)
|
|
init_to_get_rotary(model.model, base=10000)
|
|
model = model.half()
|
|
|
|
model_config = model.config
|
|
|
|
shard_config = ShardConfig(enable_tensor_parallelism=True if args.tp_size > 1 else False, inference_only=True)
|
|
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)
|
|
|
|
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False)
|
|
input_tokens = {
|
|
"input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device='cuda'),
|
|
"attention_mask": torch.ones((max_batch_size, max_input_len), device='cuda')
|
|
}
|
|
|
|
iters = 10
|
|
times = []
|
|
|
|
for i in range(iters):
|
|
torch.cuda.synchronize()
|
|
start = time.time()
|
|
outputs = infer_engine.generate(input_tokens, **generate_kwargs)
|
|
torch.cuda.synchronize()
|
|
end = time.time()
|
|
out_len = outputs.shape[1]
|
|
print("generation time {} s".format(str(end - start)))
|
|
times.append((end - start) / (out_len - max_input_len))
|
|
|
|
print("outputs, ", len(outputs))
|
|
print_perf_stats(times, model_config, max_batch_size)
|
|
|
|
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True) as prof:
|
|
with record_function("model_inference"):
|
|
torch.cuda.synchronize()
|
|
outputs = infer_engine.generate(input_tokens, **generate_kwargs)
|
|
torch.cuda.synchronize()
|
|
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
|
|
|
|
|
def check_llama(rank, world_size, port, args):
|
|
disable_existing_loggers()
|
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
run_llama_test(args)
|
|
|
|
|
|
@rerun_if_address_is_in_use()
|
|
@clear_cache_before_run()
|
|
def test_llama(args):
|
|
spawn(check_llama, args.tp_size, args=args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-p', '--path', type=str, help='Model path', required=True)
|
|
parser.add_argument('-tp', '--tp_size', type=int, default=1, help='Tensor parallel size')
|
|
parser.add_argument('-b', '--batch_size', type=int, default=16, help='Maximum batch size')
|
|
parser.add_argument('--input_len', type=int, default=1024, help='Maximum input length')
|
|
parser.add_argument('--output_len', type=int, default=128, help='Maximum output length')
|
|
|
|
args = parser.parse_args()
|
|
|
|
test_llama(args)
|