You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/examples/inference/bench_llama.py

129 lines
5.0 KiB

import argparse
import os
import time
import torch
from torch.profiler import ProfilerActivity, profile, record_function
from transformers import LlamaForCausalLM, LlamaTokenizer
import colossalai
from colossalai.inference.tensor_parallel.engine import TPInferEngine
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer import ShardConfig
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'
def init_to_get_rotary(self, base=10000):
self.config.head_dim_ = self.config.hidden_size // self.config.num_attention_heads
if not hasattr(self.config, "rope_scaling"):
rope_scaling_factor = 1.0
else:
rope_scaling_factor = self.config.rope_scaling.factor if self.config.rope_scaling is not None else 1.0
if hasattr(self.config, "max_sequence_length"):
max_seq_len = self.config.max_sequence_length
elif hasattr(self.config, "max_position_embeddings"):
max_seq_len = self.config.max_position_embeddings * rope_scaling_factor
else:
max_seq_len = 2048 * rope_scaling_factor
base = float(base)
inv_freq = 1.0 / (base**(torch.arange(0, self.config.head_dim_, 2, device="cpu", dtype=torch.float32) /
self.config.head_dim_))
t = torch.arange(max_seq_len + 1024 * 64, device="cpu", dtype=torch.float32) / rope_scaling_factor
freqs = torch.outer(t, inv_freq)
self._cos_cached = torch.cos(freqs).to(torch.float16).cuda()
self._sin_cached = torch.sin(freqs).to(torch.float16).cuda()
return
def print_perf_stats(latency_set, config, bs, warmup=3):
# trim warmup queries
latency_set = list(latency_set)
latency_set = latency_set[warmup:]
count = len(latency_set)
if count > 0:
latency_set.sort()
avg = sum(latency_set) / count
num_layers = getattr(config, "num_layers", config.num_hidden_layers)
num_parameters = num_layers * config.hidden_size * config.hidden_size * 12
num_bytes = 2
print("Avg Per Token Latency: {0:8.2f} ms".format(avg * 1000))
print("Avg BW: {0:8.2f} GB/s".format(1 / avg * num_parameters * num_bytes / 1e9))
print("Avg flops: {0:8.2f} TFlops/s".format(1 / avg * num_parameters * num_bytes * bs / 1e12))
def run_llama_test(args):
llama_model_path = args.path
max_batch_size = args.batch_size
max_input_len = args.input_len
max_output_len = args.output_len
tokenizer = LlamaTokenizer.from_pretrained(llama_model_path)
tokenizer.pad_token_id = tokenizer.unk_token_id
model = LlamaForCausalLM.from_pretrained(llama_model_path, pad_token_id=tokenizer.eos_token_id)
init_to_get_rotary(model.model, base=10000)
model = model.half()
model_config = model.config
shard_config = ShardConfig(enable_tensor_parallelism=True if args.tp_size > 1 else False, inference_only=True)
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False)
input_tokens = {
"input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device='cuda'),
"attention_mask": torch.ones((max_batch_size, max_input_len), device='cuda')
}
iters = 10
times = []
for i in range(iters):
torch.cuda.synchronize()
start = time.time()
outputs = infer_engine.generate(input_tokens, **generate_kwargs)
torch.cuda.synchronize()
end = time.time()
out_len = outputs.shape[1]
print("generation time {} s".format(str(end - start)))
times.append((end - start) / (out_len - max_input_len))
print("outputs, ", len(outputs))
print_perf_stats(times, model_config, max_batch_size)
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True) as prof:
with record_function("model_inference"):
torch.cuda.synchronize()
outputs = infer_engine.generate(input_tokens, **generate_kwargs)
torch.cuda.synchronize()
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
def check_llama(rank, world_size, port, args):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_llama_test(args)
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_llama(args):
spawn(check_llama, args.tp_size, args=args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-p', '--path', type=str, help='Model path', required=True)
parser.add_argument('-tp', '--tp_size', type=int, default=1, help='Tensor parallel size')
parser.add_argument('-b', '--batch_size', type=int, default=16, help='Maximum batch size')
parser.add_argument('--input_len', type=int, default=1024, help='Maximum input length')
parser.add_argument('--output_len', type=int, default=128, help='Maximum output length')
args = parser.parse_args()
test_llama(args)