ColossalAI/colossalai/legacy/nn/layer/parallel_3d/_utils.py

106 lines
2.9 KiB
Python

from collections import OrderedDict
from functools import partial
import torch
from torch import Tensor
from colossalai.legacy.constants import (
INPUT_GROUP_3D,
INPUT_X_WEIGHT_3D,
OUTPUT_GROUP_3D,
OUTPUT_X_WEIGHT_3D,
WEIGHT_GROUP_3D,
)
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.global_variables import tensor_parallel_env as env
def get_depth_from_env() -> int:
try:
depth = env.depth_3d
assert depth > 0, 'DEPTH must be greater than zero'
return depth
except KeyError as e:
raise EnvironmentError('DEPTH is not found in the current environment, '
'please make sure that you have used the correct process group initializer')
def get_parallel_mode_from_env(group):
assert group in [INPUT_GROUP_3D, WEIGHT_GROUP_3D, OUTPUT_GROUP_3D, INPUT_X_WEIGHT_3D, OUTPUT_X_WEIGHT_3D], \
f'{group} is not valid for 3D tensor parallelism.'
return getattr(env, group)
def swap_in_out_group():
env.input_group_3d, env.output_group_3d = env.output_group_3d, env.input_group_3d
env.input_x_weight_group_3d, env.output_x_weight_group_3d = (
env.output_x_weight_group_3d,
env.input_x_weight_group_3d,
)
def dbg_check_shape(tensor: Tensor, shape: tuple):
rank = gpc.get_global_rank()
if rank == 0:
print(tensor.shape)
assert tensor.shape == shape, \
'{} does not match {}'.format(tensor.shape, shape)
class AsyncGradientBucket(object):
def __init__(self):
self.bucket = OrderedDict()
def __len__(self):
return len(self.bucket)
def push(self, async_op, grad_tensor, param_id):
self.bucket[param_id] = tuple((async_op, grad_tensor))
return torch.zeros_like(grad_tensor, dtype=grad_tensor.dtype, device=grad_tensor.device)
def pop(self, param_id):
grad = None
if param_id in self.bucket:
op, grad = self.bucket.pop(param_id)
if op is not None:
op.wait()
return grad
def synchronize(self, params):
for p in params:
i = id(p)
if i in self.bucket:
op, grad = self.bucket.pop(i)
if op is not None:
op.wait()
p.grad.add_(grad)
_async_grad_bucket = AsyncGradientBucket()
def push_async_grad(op, grad, param_id):
return _async_grad_bucket.push(op, grad, param_id)
def pop_async_grad(param_id):
return _async_grad_bucket.pop(param_id)
def _async_grad_hook(grad, param_id):
grad.add_(pop_async_grad(param_id))
return grad
def register_async_grad_hook(param):
param.register_hook(partial(_async_grad_hook, param_id=id(param)))
def synchronize(params=list()):
_async_grad_bucket.synchronize(params)
torch.cuda.default_stream().synchronize()
if len(_async_grad_bucket) > 0:
raise RuntimeError(f"{len(_async_grad_bucket)} asynchronous gradient(s) not collected.")