You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/utils/checkpoint_io/distributed.py

128 lines
5.8 KiB

import torch
from numpy import prod
from torch import Tensor
from typing import List, Optional, Tuple
from collections import defaultdict
from .meta import ParamDistMeta, ParamRedistMeta
def unflatten_zero_param(tensors: List[Tensor], dist_metas: List[ParamDistMeta]) -> Tensor:
assert len(tensors) > 0 and len(dist_metas) > 0 and len(tensors) == len(dist_metas)
for dist_meta in dist_metas[1:]:
assert dist_meta.zero_meta == dist_metas[0].zero_meta, 'Expect all params have the same zero meta.'
if not dist_metas[0].used_zero:
# tensors are replicate
return tensors[0]
numel = dist_metas[0].zero_numel
orig_shape = dist_metas[0].zero_orig_shape
tensors = [t[1] for t in sorted(zip(dist_metas, tensors), key=lambda tp: tp[0].dp_rank)]
assert numel == sum(t.numel() for t in tensors), 'Expect numel of all params is equal to zero_numel.'
return torch.cat(tensors).reshape(orig_shape)
def gather_tp_param(tensors: List[Tensor], dist_metas: List[ParamDistMeta]) -> Tensor:
assert len(tensors) > 0 and len(dist_metas) > 0 and len(tensors) == len(dist_metas)
for dist_meta in dist_metas[1:]:
assert dist_meta.tp_meta == dist_metas[0].tp_meta, 'Expect all params have the same tp meta.'
for t in tensors[1:]:
assert t.shape == tensors[0].shape, 'Expect all params have the same shape.'
if not dist_metas[0].used_tp:
# tensors are replicate
return tensors[0]
total_parts = prod(dist_meta.tp_num_parts)
assert dist_meta.tp_world_size == total_parts, \
f'Expect prod(tp_num_parts) == tp_world_size, got {total_parts} and {dist_meta.tp_world_size}.'
shard_info = sorted(zip(dist_meta.tp_shard_dims, dist_meta.tp_num_parts), key=lambda t: t[0], reverse=True)
for dim, num_parts in shard_info:
buffer = []
for start in range(0, len(tensors), num_parts):
buffer.append(torch.cat(tensors[start:start + num_parts], dim))
tensors = buffer
assert len(tensors) == 1
return tensors[0]
def validate_parallel_info(dist_metas: List[ParamDistMeta]) -> None:
assert len(dist_metas) > 0
# check world size
for dist_meta in dist_metas[1:]:
assert dist_meta.dp_world_size == dist_metas[
0].dp_world_size, 'Expect all dist meta have the same dp_world_size'
assert dist_meta.tp_world_size == dist_metas[
0].tp_world_size, 'Expect all dist meta have the same tp_world_size'
def deduplicate_params(tensors: List[Tensor],
dist_metas: List[ParamDistMeta]) -> Tuple[List[Tensor], List[ParamDistMeta]]:
unique_dist_meta = []
unique_idx = []
for i, dist_meta in enumerate(dist_metas):
if dist_meta not in unique_dist_meta:
unique_dist_meta.append(dist_meta)
unique_idx.append(i)
return [tensors[i] for i in unique_idx], [dist_metas[i] for i in unique_idx]
def merge_param(tensors: List[Tensor], dist_metas: List[ParamDistMeta]) -> Tensor:
assert len(tensors) > 0 and len(dist_metas) > 0 and len(tensors) == len(dist_metas)
# validate parallel info
validate_parallel_info(dist_metas)
tensors, dist_metas = deduplicate_params(tensors, dist_metas)
unflattened_tensors = []
# group zero params by tp rank
tensor_dict = defaultdict(list)
dist_meta_dict = defaultdict(list)
for t, dist_meta in zip(tensors, dist_metas):
tensor_dict[dist_meta.tp_rank].append(t)
dist_meta_dict[dist_meta.tp_rank].append(dist_meta)
assert len(tensor_dict
) == dist_metas[0].tp_world_size, f'Expect {dist_metas[0].tp_world_size} ranks, got {len(tensor_dict)}'
for tp_rank in tensor_dict.keys():
unflattened_tensors.append(unflatten_zero_param(tensor_dict[tp_rank], dist_meta_dict[tp_rank]))
return gather_tp_param(unflattened_tensors, [dist_meta_list[0] for dist_meta_list in dist_meta_dict.values()])
def split_tp_param(tensor: Tensor, redist_meta: ParamRedistMeta) -> List[Tensor]:
if not redist_meta.used_tp:
assert redist_meta.tp_world_size == 1, 'Expect tp_world_size == 1, when no tp meta provided.'
return [tensor]
total_parts = prod(redist_meta.tp_num_parts)
assert redist_meta.tp_world_size == total_parts, f'Expect prod(tp_num_parts) == tp_world_size, got {total_parts} and {redist_meta.tp_world_size}.'
shard_info = sorted(zip(redist_meta.tp_shard_dims, redist_meta.tp_num_parts), key=lambda t: t[0])
tensors = [tensor]
for dim, num_parts in shard_info:
buffer = []
for t in tensors:
assert t.size(dim) % num_parts == 0, \
f'Expect dim{dim} of tensor({tensor.shape}) is divisible by {num_parts}.'
chunks = [chunk.contiguous() for chunk in t.chunk(num_parts, dim)]
buffer.extend(chunks)
tensors = buffer
assert len(tensors) == redist_meta.tp_world_size
return tensors
def flatten_zero_param(tensor: Tensor, redist_meta: ParamRedistMeta) -> List[Tensor]:
if not redist_meta.used_zero:
return [tensor] * redist_meta.dp_world_size
tensors: List[Optional[Tensor]] = [
torch.empty(0, dtype=tensor.dtype, device=tensor.device) for _ in range(redist_meta.zero_start_dp_rank)
]
offsets = redist_meta.zero_offsets + [tensor.numel()]
for i, offset in enumerate(offsets[:-1]):
end = offsets[i + 1]
tensors.append(tensor.view(-1)[offset:end])
if len(tensors) < redist_meta.dp_world_size:
tensors.extend([
torch.empty(0, dtype=tensor.dtype, device=tensor.device)
for _ in range(redist_meta.dp_world_size - len(tensors))
])
assert len(tensors) == redist_meta.dp_world_size
return tensors
def unmerge_param(tensor: Tensor, redist_meta: ParamRedistMeta) -> List[List[Tensor]]:
tensors = split_tp_param(tensor, redist_meta)
tensors = [flatten_zero_param(t, redist_meta) for t in tensors]
return tensors