ColossalAI/tests/test_analyzer/test_fx/test_symbolic_profile.py

50 lines
1.6 KiB
Python

import pytest
import timm.models as tmm
import torch
import torchvision.models as tm
from .zoo import tm_models, tmm_models
try:
from colossalai._analyzer._subclasses import MetaTensorMode
from colossalai._analyzer.fx import symbolic_profile, symbolic_trace
except:
pass
def _check_gm_validity(gm: torch.fx.GraphModule):
for node in gm.graph.nodes:
assert len(node.meta['info'].global_ctx), f'In {gm.__class__.__name__}, {node} has empty global context.'
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason='torch version < 12')
@pytest.mark.parametrize('m', tm_models)
def test_torchvision_profile(m, verbose=False, bias_addition_split=False):
with MetaTensorMode():
model = m()
data = torch.rand(8, 3, 224, 224)
meta_args = {
"x": data,
}
gm = symbolic_trace(model, meta_args=meta_args, bias_addition_split=bias_addition_split)
symbolic_profile(gm, data, verbose=verbose)
_check_gm_validity(gm)
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason='torch version < 12')
@pytest.mark.parametrize('m', tmm_models)
def test_timm_profile(m, verbose=False, bias_addition_split=False):
with MetaTensorMode():
model = m()
data = torch.rand(8, 3, 224, 224)
meta_args = {
"x": data,
}
gm = symbolic_trace(model, meta_args=meta_args, bias_addition_split=bias_addition_split)
symbolic_profile(gm, data, verbose=verbose)
_check_gm_validity(gm)
if __name__ == "__main__":
test_torchvision_profile(tm.vit_b_16, verbose=True, bias_addition_split=False)
test_timm_profile(tmm.gmlp_b16_224, verbose=True, bias_addition_split=False)