ColossalAI/colossalai/nn/parallel/layers/embedding.py

39 lines
1.2 KiB
Python

from .colo_module import ColoModule
from colossalai.tensor import ComputePattern, distspec, ProcessGroup
from colossalai.core import global_context as gpc
from colossalai.context.parallel_mode import ParallelMode
class ColoEmbedding(ColoModule):
def __init__(self):
super(ColoEmbedding, self).__init__()
self._register_shard_params(['weight'])
def register(self, compute_pattern, pg: ProcessGroup):
if not compute_pattern in self._allowed_patterns:
if ComputePattern.TP1D == compute_pattern:
self._set_TP1D(pg)
def _set_TP1D(self, pg: ProcessGroup):
# TP1D Row Linear
_compute_pattern = ComputePattern.TP1D
self._register_allowed_patterns(
compute_pattern=_compute_pattern,
dist_specs={
'weight': distspec.shard([0], [pg.tp_world_size()]),
},
mode='row',
)
# TP1D Col Linear
self._register_allowed_patterns(
compute_pattern=_compute_pattern,
dist_specs={
'weight': distspec.shard([-1], [pg.tp_world_size()]),
},
mode='col',
)
self._set_default(compute_pattern=_compute_pattern, target_mode='row')