mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
136 lines
4.1 KiB
136 lines
4.1 KiB
#include <ATen/ATen.h>
|
|
#include <ATen/AccumulateType.h>
|
|
#include <ATen/cuda/CUDAContext.h>
|
|
#include <ATen/cuda/Exceptions.h>
|
|
// Another possibility:
|
|
// #include <torch/all.h>
|
|
|
|
#include <assert.h>
|
|
// Stringstream is a big hammer, but I want to rely on operator<< for dtype.
|
|
#include <sstream>
|
|
|
|
#include "type_shim.h"
|
|
#include "multi_tensor_apply.cuh"
|
|
|
|
#define BLOCK_SIZE 512
|
|
#define ILP 4
|
|
|
|
template<typename T>
|
|
__device__ __forceinline__ bool is_aligned(T* p){
|
|
return ((uint64_t)p) % (ILP*sizeof(T)) == 0;
|
|
}
|
|
|
|
template<typename T>
|
|
__device__ __forceinline__ void load_store(T* dst, T* src, int dst_offset, int src_offset){
|
|
typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LT;
|
|
((LT*)dst)[dst_offset] = ((LT*)src)[src_offset];
|
|
}
|
|
|
|
template<typename in_t, typename out_t>
|
|
struct ScaleFunctor
|
|
{
|
|
__device__ __forceinline__ void operator()(
|
|
int chunk_size,
|
|
volatile int* noop_gmem,
|
|
TensorListMetadata<2>& tl,
|
|
float scale)
|
|
{
|
|
// I'd like this kernel to propagate infs/nans.
|
|
// if(*noop_gmem == 1)
|
|
// return;
|
|
|
|
int tensor_loc = tl.block_to_tensor[blockIdx.x];
|
|
int chunk_idx = tl.block_to_chunk[blockIdx.x];
|
|
int n = tl.sizes[tensor_loc];
|
|
|
|
in_t* in = (in_t*)tl.addresses[0][tensor_loc];
|
|
in += chunk_idx*chunk_size;
|
|
|
|
out_t* out = (out_t*)tl.addresses[1][tensor_loc];
|
|
out += chunk_idx*chunk_size;
|
|
|
|
n -= chunk_idx*chunk_size;
|
|
|
|
bool finite = true;
|
|
in_t r_in[ILP];
|
|
out_t r_out[ILP];
|
|
|
|
// to make things simple, we put aligned case in a different code path
|
|
if(n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(in) && is_aligned(out))
|
|
{
|
|
for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x)
|
|
{
|
|
// load
|
|
load_store(r_in, in, 0 , i_start);
|
|
#pragma unroll
|
|
for(int ii = 0; ii < ILP; ii++)
|
|
{
|
|
r_out[ii] = static_cast<float>(r_in[ii]) * scale;
|
|
finite = finite && isfinite(r_in[ii]);
|
|
}
|
|
// store
|
|
load_store(out, r_out, i_start, 0);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Non-divergent exit condition for __syncthreads, not necessary here
|
|
for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x*ILP)
|
|
{
|
|
#pragma unroll
|
|
for(int ii = 0; ii < ILP; ii++)
|
|
{
|
|
r_in[ii] = 0;
|
|
int i = i_start + threadIdx.x + ii*blockDim.x;
|
|
if(i < n && i < chunk_size)
|
|
r_in[ii] = in[i];
|
|
}
|
|
// note for clarification to future michael:
|
|
// From a pure memory dependency perspective, there's likely no point unrolling
|
|
// the write loop, since writes just fire off once their LDGs arrive.
|
|
// Put another way, the STGs are dependent on the LDGs, but not on each other.
|
|
// There is still compute ILP benefit from unrolling the loop though.
|
|
#pragma unroll
|
|
for(int ii = 0; ii < ILP; ii++)
|
|
{
|
|
r_out[ii] = static_cast<float>(r_in[ii]) * scale;
|
|
finite = finite && isfinite(r_in[ii]);
|
|
}
|
|
#pragma unroll
|
|
for(int ii = 0; ii < ILP; ii++)
|
|
{
|
|
int i = i_start + threadIdx.x + ii*blockDim.x;
|
|
if(i < n && i < chunk_size)
|
|
out[i] = r_out[ii];
|
|
}
|
|
}
|
|
}
|
|
if(!finite)
|
|
*noop_gmem = 1; // Blindly fire off a write. These will race but that's ok.
|
|
}
|
|
};
|
|
|
|
void multi_tensor_scale_cuda(
|
|
int chunk_size,
|
|
at::Tensor noop_flag,
|
|
std::vector<std::vector<at::Tensor>> tensor_lists,
|
|
float scale)
|
|
{
|
|
using namespace at;
|
|
// The output (downscaled) type is always float.
|
|
// If build times suffer, think about where to put this dispatch,
|
|
// and what logic should be moved out of multi_tensor_apply.
|
|
|
|
DISPATCH_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(), 0, "multi_tensor_scale_cuda",
|
|
DISPATCH_FLOAT_AND_HALF(tensor_lists[1][0].scalar_type(), 1, "multi_tensor_scale_cuda",
|
|
multi_tensor_apply<2>(
|
|
BLOCK_SIZE,
|
|
chunk_size,
|
|
noop_flag,
|
|
tensor_lists,
|
|
ScaleFunctor<scalar_t_0, scalar_t_1>(),
|
|
scale); ))
|
|
AT_CUDA_CHECK(cudaGetLastError());
|
|
|
|
// AT_CUDA_CHECK(cudaDeviceSynchronize());
|
|
} |