You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/utils/memory.py

68 lines
2.3 KiB

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import gc
import psutil
import torch
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.logging import get_dist_logger
def bytes_to_GB(val, decimal=2):
'''A byte-to-Gigabyte converter, defaultly using binary notation.
:param val: X bytes to convert
:return: X' GB
'''
return round(val / (1024 * 1024 * 1024), decimal)
def bytes_to_MB(val, decimal=2):
'''A byte-to-Megabyte converter, defaultly using binary notation.
:param val: X bytes to convert
:return: X' MB
'''
return round(val / (1024 * 1024), decimal)
def report_memory_usage(message, logger=None, report_cpu=False):
'''Calculate and print RAM usage (in GB)
:param message: a prefix message to add in the log
:type message: str
:param logger: an instance of :class:`colossalai.logging.DistributedLogger`
:type logger: :class:`colossalai.logging.DistributedLogger`
:param report_cpu: whether to report CPU memory
:type report_cpu: bool
:raises EnvironmentError: raise error if no distributed environment has been initialized
'''
if not gpc.is_initialized(ParallelMode.GLOBAL):
raise EnvironmentError("No distributed environment is initialized")
gpu_allocated = bytes_to_MB(torch.cuda.memory_allocated())
gpu_max_allocated = bytes_to_MB(torch.cuda.max_memory_allocated())
gpu_cached = bytes_to_MB(torch.cuda.memory_reserved())
gpu_max_cached = bytes_to_MB(torch.cuda.max_memory_reserved())
full_log = f"{message}: GPU: allocated {gpu_allocated} MB, max allocated {gpu_max_allocated} MB, " \
+ f"cached: {gpu_cached} MB, max cached: {gpu_max_cached} MB"
if report_cpu:
# python doesn't do real-time garbage collection so do it explicitly to get the correct RAM reports
gc.collect()
vm_stats = psutil.virtual_memory()
vm_used = bytes_to_MB(vm_stats.total - vm_stats.available)
full_log += f", CPU Virtual Memory: used = {vm_used} MB, percent = {vm_stats.percent}%"
if logger is None:
logger = get_dist_logger()
logger.info(full_log)
# get the peak memory to report correct data, so reset the counter for the next call
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+
torch.cuda.reset_peak_memory_stats()