mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
144 lines
4.5 KiB
144 lines
4.5 KiB
import copy |
|
|
|
import pytest |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
from torch.testing import assert_close |
|
|
|
import colossalai |
|
from colossalai.testing import spawn |
|
from colossalai.testing.random import seed_all |
|
from colossalai.utils import conditional_context |
|
from colossalai.zero import LowLevelZeroOptimizer |
|
|
|
|
|
class MlpModel(nn.Module): |
|
def __init__(self): |
|
super(MlpModel, self).__init__() |
|
self.linear1 = nn.Linear(128, 256) |
|
self.linear2 = nn.Linear(256, 512) |
|
|
|
def forward(self, x): |
|
x = self.linear1(x) |
|
x = self.linear2(x) |
|
return x |
|
|
|
|
|
def exam_zero_1_2_grad_acc(): |
|
local_rank = torch.distributed.get_rank() |
|
seed_all(2009) |
|
|
|
# create model |
|
zero1_model = MlpModel().cuda() |
|
zero2_model = copy.deepcopy(zero1_model) |
|
# create optimizer |
|
zero1_optimizer = torch.optim.Adam(zero1_model.parameters(), lr=1) |
|
zero2_optimizer = torch.optim.Adam(zero2_model.parameters(), lr=1) |
|
zero1_optimizer = LowLevelZeroOptimizer( |
|
zero1_optimizer, overlap_communication=True, initial_scale=32, clip_grad_norm=1.0, verbose=True |
|
) |
|
zero2_optimizer = LowLevelZeroOptimizer( |
|
zero2_optimizer, overlap_communication=True, partition_grad=True, initial_scale=32, clip_grad_norm=1.0 |
|
) |
|
# create data |
|
seed_all(2021 + local_rank) |
|
input_data1 = torch.randn(32, 128).cuda() |
|
input_data2 = torch.randn(32, 128).cuda() |
|
|
|
def fwd_bwd_func(number, cur_data, check_flag): |
|
# zero-dp forward |
|
zero1_output = zero1_model(cur_data) |
|
zero2_output = zero2_model(cur_data) |
|
assert torch.equal(zero1_output, zero2_output) |
|
|
|
# zero-dp backward |
|
zero1_optimizer.backward(zero1_output.sum().float()) |
|
zero2_optimizer.backward(zero2_output.sum().float()) |
|
|
|
fwd_bwd_func(0, input_data1, True) |
|
fwd_bwd_func(1, input_data2, False) |
|
|
|
# step |
|
zero1_optimizer.step() |
|
zero2_optimizer.step() |
|
|
|
# check updated param |
|
for z1p, z2p in zip(zero1_model.parameters(), zero2_model.parameters()): |
|
assert torch.equal(z1p.data, z2p.data) |
|
|
|
|
|
def exam_zero_1_grad_acc(sync): |
|
local_rank = torch.distributed.get_rank() |
|
seed_all(2008) |
|
|
|
# create models |
|
zero_model = MlpModel() |
|
torch_model = copy.deepcopy(zero_model) |
|
|
|
seed_all(2008) |
|
zero_model = zero_model.cuda() |
|
torch_model = DDP(torch_model.cuda(), bucket_cap_mb=0) |
|
|
|
# create optimizer |
|
zero_optimizer = torch.optim.Adam(zero_model.parameters(), lr=1) |
|
|
|
# we only test stage 1 here |
|
# in `check_sharded_param_consistency.py`, we will test whether |
|
# level 1 and 2 will produce exactly the same results |
|
zero_optimizer = LowLevelZeroOptimizer( |
|
zero_optimizer, overlap_communication=False, reduce_bucket_size=262144, clip_grad_norm=1.0 |
|
) |
|
|
|
torch_optimizer = torch.optim.Adam(torch_model.parameters(), lr=1) |
|
|
|
# create data |
|
seed_all(2022 + local_rank) |
|
input_data1 = torch.randn(32, 128).cuda() |
|
input_data2 = torch.randn(32, 128).cuda() |
|
|
|
def fwd_bwd_func(no_sync, cur_data, check_flag): |
|
# zero1 fwd and bwd |
|
with conditional_context(zero_optimizer.no_sync(), no_sync): |
|
zero_output = zero_model(cur_data) |
|
zero_optimizer.backward(zero_output.sum().float()) |
|
|
|
# torch-ddp fwd and bwd |
|
with conditional_context(torch_model.no_sync(), no_sync): |
|
torch_output = torch_model(cur_data) |
|
assert torch.equal(zero_output, torch_output) |
|
torch_output.sum().backward() |
|
|
|
if check_flag: |
|
# check grad |
|
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()): |
|
assert torch.equal(p.grad, z1p.grad) |
|
|
|
fwd_bwd_func(sync, input_data1, sync) |
|
fwd_bwd_func(False, input_data2, False) |
|
|
|
zero_optimizer.step() |
|
torch.nn.utils.clip_grad_norm_(torch_model.parameters(), 1.0) |
|
torch_optimizer.step() |
|
|
|
# check updated param |
|
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()): |
|
# print(n, p.shape, torch.max(p.data), torch.max(z1p.data), torch.max(torch.abs(p.data - z1p.data))) |
|
assert_close(p.data, z1p.data) |
|
|
|
|
|
def run_dist(rank, world_size, port): |
|
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host="localhost") |
|
|
|
exam_zero_1_grad_acc(sync=True) |
|
exam_zero_1_grad_acc(sync=False) |
|
exam_zero_1_2_grad_acc() |
|
|
|
|
|
@pytest.mark.dist |
|
def test_grad_accumulation(): |
|
spawn(run_dist, 2) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_grad_accumulation()
|
|
|