mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
76 lines
2.6 KiB
76 lines
2.6 KiB
import pytest |
|
import torch |
|
|
|
from colossalai.device.device_mesh import DeviceMesh |
|
from colossalai.initialize import launch |
|
from colossalai.logging import disable_existing_loggers |
|
from colossalai.tensor.shape_consistency import ShapeConsistencyManager |
|
from colossalai.tensor.sharding_spec import ShardingSpec |
|
from colossalai.testing import rerun_if_address_is_in_use, spawn |
|
|
|
|
|
def check_apply(rank, world_size, port): |
|
disable_existing_loggers() |
|
launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") |
|
|
|
physical_mesh_id = torch.arange(0, 4) |
|
mesh_shape = (2, 2) |
|
# [[0, 1, |
|
# [2, 3]] |
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) |
|
entire_shape = torch.Size((4, 2)) |
|
shape_consistency_manager = ShapeConsistencyManager() |
|
dim_partition_source = {0: [0]} |
|
dim_partition_target = {1: [0]} |
|
|
|
# DistSpec: |
|
# shard_sequence: S0,R |
|
# device_mesh_shape: (2, 2) |
|
sharding_spec_source = ShardingSpec(device_mesh, entire_shape, dim_partition_source) |
|
|
|
# DistSpec: |
|
# shard_sequence: R,S0 |
|
# device_mesh_shape: (2, 2) |
|
sharding_spec_target = ShardingSpec(device_mesh, entire_shape, dim_partition_target) |
|
|
|
if rank in (0, 1): |
|
sharded_tensor_0 = torch.zeros(2, 1) |
|
sharded_tensor_1 = torch.ones(2, 1) |
|
# tensor([[0., 1.], |
|
# [0., 1.]]) |
|
tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda() |
|
if rank in (2, 3): |
|
sharded_tensor_0 = torch.ones(2, 1) * 2 |
|
sharded_tensor_1 = torch.ones(2, 1) * 3 |
|
# tensor([[2., 3.], |
|
# [2., 3.]]) |
|
tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda() |
|
|
|
if rank in (0, 1): |
|
# tensor([[0.], |
|
# [0.], |
|
# [2.], |
|
# [2.]]) |
|
tensor_to_check = torch.tensor([[0], [0], [2], [2]], dtype=tensor_to_comm.dtype).cuda() |
|
if rank in (2, 3): |
|
# tensor([[1.], |
|
# [1.], |
|
# [3.], |
|
# [3.]]) |
|
tensor_to_check = torch.tensor([[1], [1], [3], [3]], dtype=tensor_to_comm.dtype).cuda() |
|
|
|
tensor_to_comm.sharding_spec = sharding_spec_source |
|
tensor_to_comm = shape_consistency_manager.apply(tensor_to_comm, sharding_spec_target) |
|
assert tensor_to_comm.equal(tensor_to_check) |
|
assert str(tensor_to_comm.sharding_spec.sharding_sequence) == str(sharding_spec_target.sharding_sequence) |
|
|
|
|
|
@pytest.mark.dist |
|
@rerun_if_address_is_in_use() |
|
def test_apply(): |
|
world_size = 4 |
|
spawn(check_apply, world_size) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_apply()
|
|
|