Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

215 lines
7.2 KiB

import pytest
import torch
import torch.distributed as dist
from colossalai.device.device_mesh import DeviceMesh
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
from colossalai.tensor.shape_consistency import CollectiveCommPattern, CommSpec
from colossalai.tensor.sharding_spec import ShardingSpec
from colossalai.testing import rerun_if_address_is_in_use, spawn
def check_all_gather(device_mesh, rank):
# tensor to comm
if rank in (0, 2):
sharded_tensor_to_comm = torch.ones(2, 2).cuda()
else:
sharded_tensor_to_comm = torch.zeros(2, 2).cuda()
# tensor to check
tensor_to_check = torch.cat((torch.ones(2, 2), torch.zeros(2, 2)), 1).cuda()
# test all gather
dim_partition_dict = {1: [1]}
# DistSpec:
# shard_sequence: R,S1
# device_mesh_shape: (2, 2)
sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict)
# CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:1)
comm_spec = CommSpec(
CollectiveCommPattern.GATHER_FWD_SPLIT_BWD, sharding_spec, gather_dim=1, logical_process_axis=1
)
sharded_tensor_to_comm = sharded_tensor_to_comm = comm_spec.covert_spec_to_action(sharded_tensor_to_comm)
assert sharded_tensor_to_comm.equal(tensor_to_check)
def check_shard(device_mesh, rank):
# tensor to comm
sharded_tensor_to_comm_0 = torch.zeros(2, 2).cuda()
sharded_tensor_to_comm_1 = torch.ones(2, 2).cuda()
# tensor([[0., 0., 1., 1.],
# [0., 0., 1., 1.]])
tensor_to_shard = torch.cat((sharded_tensor_to_comm_0, sharded_tensor_to_comm_1), 1)
# test shard
dim_partition_dict = {}
# DistSpec:
# shard_sequence: R,R
# device_mesh_shape: (2, 2)
sharding_spec = ShardingSpec(device_mesh, tensor_to_shard.shape, dim_partition_dict=dim_partition_dict)
# CommSpec:(comm_pattern:shard, shard_dim:1, logical_process_axis:1)
comm_spec = CommSpec(CollectiveCommPattern.SPLIT_FWD_GATHER_BWD, sharding_spec, shard_dim=1, logical_process_axis=1)
tensor_to_shard = comm_spec.covert_spec_to_action(tensor_to_shard)
if rank in (0, 2):
assert tensor_to_shard.equal(sharded_tensor_to_comm_0)
if rank in (1, 3):
assert tensor_to_shard.equal(sharded_tensor_to_comm_1)
def check_all_to_all(device_mesh, rank):
# tensor to comm
if rank in (0, 1):
sharded_tensor_0 = torch.zeros(2, 1)
sharded_tensor_1 = torch.ones(2, 1)
# tensor([[0., 1.],
# [0., 1.]])
tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda()
if rank in (2, 3):
sharded_tensor_0 = torch.ones(2, 1) * 2
sharded_tensor_1 = torch.ones(2, 1) * 3
# tensor([[2., 3.],
# [2., 3.]])
tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda()
if rank in (0, 1):
# tensor([[0.],
# [0.],
# [2.],
# [2.]])
tensor_to_check = torch.tensor([[0], [0], [2], [2]], dtype=tensor_to_comm.dtype).cuda()
if rank in (2, 3):
# tensor([[1.],
# [1.],
# [3.],
# [3.]])
tensor_to_check = torch.tensor([[1], [1], [3], [3]], dtype=tensor_to_comm.dtype).cuda()
# test shard
dim_partition_dict = {0: [0]}
# DistSpec:
# shard_sequence: S0,R
# device_mesh_shape: (2, 2)
sharding_spec = ShardingSpec(device_mesh, torch.Size((4, 2)), dim_partition_dict=dim_partition_dict)
# CommSpec:(comm_pattern:shard, shard_dim:1, logical_process_axis:1)
comm_spec = CommSpec(
CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD, sharding_spec, gather_dim=0, shard_dim=1, logical_process_axis=0
)
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm)
assert tensor_to_comm.equal(tensor_to_check)
def check_all_reduce_fwd(device_mesh, rank):
# tensor to comm
tensor_to_comm = torch.ones(2, 2).cuda() * rank
# reduce through logical process axis 0
# tensor to check
if rank in (0, 2):
# tensor([[2., 2.],
# [2., 2.]])
tensor_to_check = torch.tensor([[2, 2], [2, 2]], dtype=tensor_to_comm.dtype).cuda()
if rank in (1, 3):
# tensor([[4., 4.],
# [4., 4.]])
tensor_to_check = torch.tensor([[4, 4], [4, 4]], dtype=tensor_to_comm.dtype).cuda()
dim_partition_dict = {}
# DistSpec:
# shard_sequence: R,R
# device_mesh_shape: (2, 2)
sharding_spec = ShardingSpec(device_mesh, tensor_to_comm.shape, dim_partition_dict=dim_partition_dict)
comm_spec = CommSpec(CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD, sharding_spec, logical_process_axis=0)
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm)
assert tensor_to_comm.equal(tensor_to_check)
def check_all_reduce_bwd(device_mesh, rank):
# tensor to comm
tensor_to_comm = torch.ones(2, 2).cuda() * rank
tensor_to_check = torch.ones(2, 2).cuda() * rank
dim_partition_dict = {}
# DistSpec:
# shard_sequence: R,R
# device_mesh_shape: (2, 2)
sharding_spec = ShardingSpec(device_mesh, tensor_to_comm.shape, dim_partition_dict=dim_partition_dict)
comm_spec = CommSpec(CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD, sharding_spec, logical_process_axis=0)
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm)
assert tensor_to_comm.equal(tensor_to_check)
def check_all_reduce_in_flatten_device_mesh(device_mesh, rank):
# tensor to comm
tensor_to_comm = torch.ones(2, 2).cuda() * rank
# reduce through logical process axis 0 at flatten device mesh
# tensor to check
# tensor([[6., 6.],
# [6., 6.]])
tensor_to_check = torch.tensor([[6, 6], [6, 6]], dtype=tensor_to_comm.dtype).cuda()
dim_partition_dict = {}
# DistSpec:
# shard_sequence: R,R
# device_mesh_shape: (2, 2)
sharding_spec = ShardingSpec(device_mesh, tensor_to_comm.shape, dim_partition_dict=dim_partition_dict)
# CommSpec:(comm_pattern:all_reduce, logical_process_axis:[0, 1])
comm_spec = CommSpec(CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD, sharding_spec, logical_process_axis=[0, 1])
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm)
assert tensor_to_comm.equal(tensor_to_check)
def check_comm(rank, world_size, port):
disable_existing_loggers()
launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
physical_mesh_id = torch.arange(0, 4)
assert rank == dist.get_rank()
mesh_shape = (2, 2)
# [[0, 1,
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
# test all gather
check_all_gather(device_mesh, rank)
# test shard
check_shard(device_mesh, rank)
# test all to all
check_all_to_all(device_mesh, rank)
# test all reduce
check_all_reduce_fwd(device_mesh, rank)
check_all_reduce_bwd(device_mesh, rank)
# test all reduce in 1D flatten device mesh
check_all_reduce_in_flatten_device_mesh(device_mesh, rank)
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_comm_spec():
world_size = 4
spawn(check_comm, world_size)
if __name__ == "__main__":
test_comm_spec()