Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

189 lines
6.6 KiB

from contextlib import nullcontext
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.testing import assert_close
import colossalai
from colossalai.lazy import LazyInitContext
from colossalai.shardformer.layer import Linear1D_Col, Linear1D_Row
from colossalai.tensor.d_tensor import is_distributed_tensor
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
def check_linear_1d_col(lazy_init: bool, seq_parallel: bool, overlap: bool):
ctx = LazyInitContext() if lazy_init else nullcontext()
linear = nn.Linear(32, 128).cuda()
with ctx:
linear_copy = nn.Linear(32, 128).cuda()
linear_col = Linear1D_Col.from_native_module(
linear_copy, process_group=None, gather_output=True, seq_parallel=seq_parallel, overlap=overlap
)
# ensure that the parameters are distributed
assert is_distributed_tensor(linear_col.weight)
assert is_distributed_tensor(linear_col.bias)
assert linear_copy.weight is linear_col.weight
assert linear_copy.bias is linear_col.bias
# ensure the shape is correct
assert linear_col.weight.shape == torch.Size([64, 32])
assert linear_col.bias.shape == torch.Size([64])
# ensure state dict is reversibly loadable
linear.load_state_dict(linear_col.state_dict())
linear_col.load_state_dict(linear.state_dict())
# check computation correctness
# [batch_size, seq_len, hidden_size]
x = torch.rand(2, 4, 32).cuda()
x_for_unshard = x.expand_as(x.clone())
x_for_unshard.requires_grad_(True)
x_for_shard = x.expand_as(x.clone()) if seq_parallel is False else torch.chunk(x.clone(), 2, dim=1)[dist.get_rank()]
x_for_shard.requires_grad_(True)
out = linear(x_for_unshard)
gather_out = linear_col(x_for_shard)
assert_close(out, gather_out)
# check backward correctness
out.sum().backward()
gather_out.sum().backward()
rank = dist.get_rank()
target_grad = torch.chunk(linear.weight.grad, 2, dim=0)[rank]
assert_close(target_grad, linear_col.weight.grad)
# check the input gradients
assert x_for_shard.grad is not None
assert x_for_unshard.grad is not None
target_unshard_gard = (
x_for_unshard.grad
if seq_parallel is False
else torch.chunk(x_for_unshard.grad.clone(), 2, dim=1)[dist.get_rank()]
)
assert_close(target_unshard_gard, x_for_shard.grad)
def check_linear_1d_row(lazy_init: bool, seq_parallel: bool):
ctx = LazyInitContext() if lazy_init else nullcontext()
linear = nn.Linear(32, 128).cuda()
with ctx:
linear_copy = nn.Linear(32, 128).cuda()
linear_row = Linear1D_Row.from_native_module(
linear_copy, process_group=None, parallel_input=False, seq_parallel=seq_parallel
)
assert linear_row.weight.shape == torch.Size([128, 16])
assert linear_row.bias.shape == torch.Size([128])
assert linear_copy.weight is linear_row.weight
assert linear_copy.bias is linear_row.bias
linear.load_state_dict(linear_row.state_dict())
linear_row.load_state_dict(linear.state_dict())
# check computation correctness
# [batch_size, seq_len, hidden_size]
x = torch.rand(2, 4, 32).cuda()
x_for_unshard = x.expand_as(x.clone())
x_for_unshard.requires_grad_(True)
x_for_shard = x.expand_as(x.clone())
x_for_shard.requires_grad_(True)
# run forward
out = linear(x_for_unshard)
gather_out = linear_row(x_for_shard)
target_out = out if seq_parallel is False else torch.chunk(out.clone(), 2, dim=1)[dist.get_rank()]
assert_close(target_out, gather_out)
# check backward correctness
out.sum().backward()
gather_out.sum().backward()
rank = dist.get_rank()
target_grad = torch.chunk(linear.weight.grad, 2, dim=1)[rank]
assert_close(target_grad, linear_row.weight.grad)
# check the input gradients
assert x_for_shard.grad is not None
assert x_for_unshard.grad is not None
assert_close(x_for_unshard.grad, x_for_shard.grad)
def check_linear_col_plus_row(lazy_init: bool, seq_parallel: bool, overlap: bool):
ctx = LazyInitContext() if lazy_init else nullcontext()
linear_1 = nn.Linear(32, 128).cuda()
linear_2 = nn.Linear(128, 32).cuda()
with ctx:
linear_1_copy = nn.Linear(32, 128).cuda()
linear_2_copy = nn.Linear(128, 32).cuda()
linear_col = Linear1D_Col.from_native_module(
linear_1_copy, process_group=None, gather_output=False, seq_parallel=seq_parallel, overlap=overlap
)
linear_row = Linear1D_Row.from_native_module(
linear_2_copy, process_group=None, parallel_input=True, seq_parallel=seq_parallel
)
linear_1.load_state_dict(linear_col.state_dict())
linear_col.load_state_dict(linear_1.state_dict())
linear_2.load_state_dict(linear_row.state_dict())
linear_row.load_state_dict(linear_2.state_dict())
# check computation correctness
# [batch_size, seq_len, hidden_size]
x = torch.rand(2, 4, 32).cuda()
x_for_unshard = x.expand_as(x.clone())
x_for_unshard.requires_grad_(True)
x_for_shard = x.expand_as(x.clone()) if seq_parallel is False else torch.chunk(x.clone(), 2, dim=1)[dist.get_rank()]
x_for_shard.requires_grad_(True)
# run forward
unshard_out = linear_2(linear_1(x_for_unshard))
shard_out = linear_row(linear_col(x_for_shard))
target_out = unshard_out if seq_parallel is False else torch.chunk(unshard_out.clone(), 2, dim=1)[dist.get_rank()]
assert_close(target_out, shard_out)
# check backward correctness
unshard_out.sum().backward()
shard_out.sum().backward()
rank = dist.get_rank()
target_1_grad = torch.chunk(linear_1.weight.grad, 2, dim=0)[rank]
assert_close(target_1_grad, linear_col.weight.grad)
# check the input gradients
assert x_for_shard.grad is not None
assert x_for_unshard.grad is not None
target_unshard_gard = (
x_for_unshard.grad
if seq_parallel is False
else torch.chunk(x_for_unshard.grad.clone(), 2, dim=1)[dist.get_rank()]
)
assert_close(target_unshard_gard, x_for_shard.grad)
@parameterize("lazy_init", [False, True])
@parameterize("seq_parallel", [False, True])
@parameterize("overlap", [True])
def run_dist_linear_test(lazy_init, seq_parallel, overlap):
check_linear_1d_col(lazy_init, seq_parallel, overlap)
check_linear_1d_row(lazy_init, seq_parallel)
check_linear_col_plus_row(lazy_init, seq_parallel, overlap)
def check_dist_linear(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_dist_linear_test()
@rerun_if_address_is_in_use()
def test_linear():
spawn(check_dist_linear, nprocs=2)
if __name__ == "__main__":
test_linear()