mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
56 lines
1.7 KiB
56 lines
1.7 KiB
from contextlib import nullcontext |
|
|
|
import torch |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
from torch.testing import assert_close |
|
|
|
import colossalai |
|
from colossalai.lazy import LazyInitContext |
|
from colossalai.shardformer.layer import Embedding1D |
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn |
|
|
|
|
|
@parameterize("lazy_init", [False, True]) |
|
def check_embedding_1d(lazy_init: bool): |
|
ctx = LazyInitContext() if lazy_init else nullcontext() |
|
|
|
embedding = nn.Embedding(32, 128).cuda() |
|
with ctx: |
|
embedding_copy = nn.Embedding(32, 128).cuda() |
|
embedding_1d = Embedding1D.from_native_module(embedding_copy, process_group=None) |
|
|
|
assert embedding_1d.weight.shape == torch.Size([32, 64]) |
|
assert embedding_1d.weight is embedding_copy.weight |
|
|
|
# ensure state dict is reversibly loadable |
|
embedding.load_state_dict(embedding_1d.state_dict()) |
|
embedding_1d.load_state_dict(embedding.state_dict()) |
|
|
|
# check computation correctness |
|
x = torch.randint(low=0, high=32, size=(4, 32)).cuda() |
|
out = embedding(x) |
|
gather_out = embedding_1d(x) |
|
assert_close(out, gather_out) |
|
|
|
# check backward correctness |
|
out.sum().backward() |
|
gather_out.sum().backward() |
|
|
|
rank = dist.get_rank() |
|
target_grad = torch.chunk(embedding.weight.grad, 2, dim=1)[rank] |
|
assert_close(target_grad, embedding_1d.weight.grad) |
|
|
|
|
|
def run_dist(rank, world_size, port): |
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") |
|
check_embedding_1d() |
|
|
|
|
|
@rerun_if_address_is_in_use() |
|
def test_embedding_1d(): |
|
spawn(run_dist, nprocs=2) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_embedding_1d()
|
|
|