mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
59 lines
1.8 KiB
59 lines
1.8 KiB
import pytest |
|
import torch |
|
import torch.distributed as dist |
|
|
|
import colossalai |
|
from colossalai.cluster import ProcessGroupMesh |
|
from colossalai.pipeline.p2p import PipelineP2PCommunication |
|
from colossalai.pipeline.stage_manager import PipelineStageManager |
|
from colossalai.testing import rerun_if_address_is_in_use, spawn |
|
from colossalai.utils import get_current_device |
|
|
|
|
|
def check_p2p_communication(): |
|
pg_mesh = ProcessGroupMesh(2) |
|
stage_manager = PipelineStageManager(pg_mesh, 0) |
|
p2p = PipelineP2PCommunication(stage_manager) |
|
|
|
rank = dist.get_rank() |
|
|
|
tensor = torch.ones(1, device=get_current_device()) |
|
|
|
if rank == 0: |
|
p2p.send_forward(tensor) |
|
p2p.send_forward([tensor]) |
|
p2p.send_forward({"tensor": tensor}) |
|
else: |
|
obj = p2p.recv_forward() |
|
assert torch.equal(obj, tensor) |
|
obj = p2p.recv_forward() |
|
assert type(obj) == list and len(obj) == 1 and torch.equal(obj[0], tensor) |
|
obj = p2p.recv_forward() |
|
assert type(obj) == dict and "tensor" in obj and torch.equal(obj["tensor"], tensor) |
|
|
|
if rank == 1: |
|
p2p.send_backward(tensor) |
|
p2p.send_backward([tensor]) |
|
p2p.send_backward({"tensor": tensor}) |
|
else: |
|
obj = p2p.recv_backward() |
|
assert torch.equal(obj, tensor) |
|
obj = p2p.recv_backward() |
|
assert type(obj) == list and len(obj) == 1 and torch.equal(obj[0], tensor) |
|
obj = p2p.recv_backward() |
|
assert type(obj) == dict and "tensor" in obj and torch.equal(obj["tensor"], tensor) |
|
|
|
|
|
def run_dist(rank, world_size, port): |
|
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host="localhost") |
|
check_p2p_communication() |
|
|
|
|
|
@pytest.mark.dist |
|
@rerun_if_address_is_in_use() |
|
def test_pipeline_p2p(): |
|
spawn(run_dist, 2) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_pipeline_p2p()
|
|
|