Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

171 lines
5.9 KiB

# This test checks adam kernels
# Baseline is pure fp32 torch adam optimizer
import math
from abc import abstractmethod
from typing import Type
import pytest
import torch
from torch import Tensor
from colossalai.utils import get_current_device, multi_tensor_applier
_FUSED_ALLOWED_P_G_TYPES = [
(torch.float, torch.half),
(torch.float, torch.float),
(torch.half, torch.float),
(torch.half, torch.half),
(torch.bfloat16, torch.float),
(torch.float, torch.bfloat16),
(torch.bfloat16, torch.bfloat16),
]
_CPU_ALLOWED_P_G_TYPES = [
(torch.float, torch.half),
(torch.float, torch.float),
(torch.half, torch.float),
(torch.half, torch.half),
]
class AdamKernel:
def __init__(self, lr: float, beta1: float, beta2: float, eps: float, weight_decay: float, use_adamw: bool) -> None:
self.lr = lr
self.beta1 = beta1
self.beta2 = beta2
self.eps = eps
self.weight_decay = weight_decay
self.use_adamw = use_adamw
@abstractmethod
def update(self, step: int, param: Tensor, grad: Tensor, exp_avg: Tensor, exp_avg_sq: Tensor):
pass
class TorchAdamKernel(AdamKernel):
def update(self, step: int, param: Tensor, grad: Tensor, exp_avg: Tensor, exp_avg_sq: Tensor):
bias_correction1 = 1 - self.beta1**step
bias_correction2 = 1 - self.beta2**step
if self.weight_decay != 0:
if self.use_adamw:
# Perform stepweight decay
param.mul_(1 - self.lr * self.weight_decay)
else:
grad = grad.add(param, alpha=self.weight_decay)
# Decay the first and second moment running average coefficient
exp_avg.mul_(self.beta1).add_(grad, alpha=1 - self.beta1)
exp_avg_sq.mul_(self.beta2).addcmul_(grad, grad, value=1 - self.beta2)
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(self.eps)
step_size = self.lr / bias_correction1
param.addcdiv_(exp_avg, denom, value=-step_size)
class FusedAdamKernel(AdamKernel):
def __init__(self, lr: float, beta1: float, beta2: float, eps: float, weight_decay: float, use_adamw: bool) -> None:
super().__init__(lr, beta1, beta2, eps, weight_decay, use_adamw)
from colossalai.kernel.op_builder import FusedOptimBuilder
fused_optim = FusedOptimBuilder().load()
self.fused_adam = fused_optim.multi_tensor_adam
self.dummy_overflow_buf = torch.cuda.IntTensor([0])
def update(self, step: int, param: Tensor, grad: Tensor, exp_avg: Tensor, exp_avg_sq: Tensor):
multi_tensor_applier(
self.fused_adam,
self.dummy_overflow_buf,
[[grad], [param], [exp_avg], [exp_avg_sq]],
self.lr,
self.beta1,
self.beta2,
self.eps,
step,
self.use_adamw,
True,
self.weight_decay,
-1,
)
class CPUAdamKernel(AdamKernel):
def __init__(self, lr: float, beta1: float, beta2: float, eps: float, weight_decay: float, use_adamw: bool) -> None:
super().__init__(lr, beta1, beta2, eps, weight_decay, use_adamw)
from colossalai.kernel.op_builder import CPUAdamBuilder
cpu_optim = CPUAdamBuilder().load()
self.cpu_adam_op = cpu_optim.CPUAdamOptimizer(lr, beta1, beta2, eps, weight_decay, use_adamw)
def update(self, step: int, param: Tensor, grad: Tensor, exp_avg: Tensor, exp_avg_sq: Tensor):
self.cpu_adam_op.step(
step,
self.lr,
self.beta1,
self.beta2,
self.eps,
self.weight_decay,
True,
param.view(-1),
grad.view(-1),
exp_avg.view(-1),
exp_avg_sq.view(-1),
-1,
)
def check_adam_kernel(
kernel: Type[AdamKernel],
adamw: bool,
weight_decay: float,
p_dtype: torch.dtype,
g_dtype: torch.dtype,
device: torch.device,
n_steps: int,
rtol: float,
atol: float,
):
lr = 1e-3
beta1, beta2 = 0.9, 0.999
eps = 1e-8
torch_adam = TorchAdamKernel(lr, beta1, beta2, eps, weight_decay, adamw)
adam_kernel = kernel(lr, beta1, beta2, eps, weight_decay, adamw)
master_p = torch.rand(64, device=device)
master_g = torch.rand_like(master_p)
master_exp_avg = torch.zeros_like(master_p)
master_exp_avg_sq = torch.zeros_like(master_p)
p = master_p.clone().to(p_dtype)
g = master_g.clone().to(g_dtype)
exp_avg = master_exp_avg.clone()
exp_avg_sq = master_exp_avg_sq.clone()
for step in range(1, 1 + n_steps):
torch_adam.update(step, master_p, master_g, master_exp_avg, master_exp_avg_sq)
adam_kernel.update(step, p, g, exp_avg, exp_avg_sq)
# if overflow, the weight won't be updated. so there will be no nan in p
assert not torch.isnan(p).any()
assert torch.allclose(master_p, p.float(), rtol=rtol, atol=atol)
@pytest.mark.parametrize("adamw", [False, True])
@pytest.mark.parametrize("weight_decay", [0.0, 0.1])
@pytest.mark.parametrize("p_dtype, g_dtype", _FUSED_ALLOWED_P_G_TYPES)
def test_fused_adam_kernel(adamw, weight_decay, p_dtype, g_dtype):
rtol, atol = 1e-5, 1e-8
if p_dtype is torch.float16 or g_dtype is torch.float16:
rtol, atol = 1e-3, 1e-3
if p_dtype is torch.bfloat16 or g_dtype is torch.bfloat16:
rtol, atol = 4e-3, 4e-3
check_adam_kernel(FusedAdamKernel, adamw, weight_decay, p_dtype, g_dtype, get_current_device(), 3, rtol, atol)
@pytest.mark.parametrize("adamw", [False, True])
@pytest.mark.parametrize("weight_decay", [0.0, 0.1])
@pytest.mark.parametrize("p_dtype, g_dtype", _CPU_ALLOWED_P_G_TYPES)
def test_cpu_adam_kernel(adamw, weight_decay, p_dtype, g_dtype):
rtol, atol = 1e-5, 1e-8
if p_dtype is torch.float16 or g_dtype is torch.float16:
rtol, atol = 1e-3, 1e-3
check_adam_kernel(CPUAdamKernel, adamw, weight_decay, p_dtype, g_dtype, torch.device("cpu"), 3, rtol, atol)