Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

106 lines
3.6 KiB

import pytest
import torch
import torch.nn as nn
import colossalai
from colossalai.context import MOE_CONTEXT
from colossalai.logging import get_dist_logger
from colossalai.nn import CheckpointModule
from colossalai.nn.layer import MoeModule
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.utils import get_current_device
from colossalai.zero.legacy.init_ctx import ZeroInitContext
from colossalai.zero.legacy.shard_utils import BucketTensorShardStrategy, TensorShardStrategy
from tests.test_zero.test_legacy.common import CONFIG
class MoeModel(nn.Module):
def __init__(self, checkpoint: bool = False):
class TestSubModule(CheckpointModule):
def __init__(self):
super().__init__(checkpoint)
expert_cls = nn.Linear
expert_args_dict = dict(in_features=16, out_features=16)
self.moe = MoeModule(
dim_model=16, num_experts=8, use_residual=True, expert_cls=expert_cls, **expert_args_dict
)
self.proj = nn.Linear(16, 4)
def _forward(self, x):
x, y = self.moe(x)
x = self.proj(x)
return x, y
super().__init__()
self.test_embed = nn.Linear(4, 16)
self.test_transform = TestSubModule()
def forward(self, x):
MOE_CONTEXT.reset_loss()
x = self.test_embed(x)
x, y = self.test_transform(x)
MOE_CONTEXT.add_loss(y)
return x
@parameterize("init_device_type", ["cpu", "cuda"])
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy])
def run_moe_zero_init(init_device_type, shard_strategy_class):
get_dist_logger("test_moe_zero_init")
if init_device_type == "cuda":
init_device = get_current_device()
elif init_device_type == "cpu":
init_device = torch.device("cpu")
else:
raise NotImplementedError("Unknown device found.")
model_numel_tensor = torch.zeros(1, dtype=torch.int)
with ZeroInitContext(
target_device=init_device,
shard_strategy=shard_strategy_class(),
shard_param=True,
model_numel_tensor=model_numel_tensor,
):
model = MoeModel(checkpoint=True)
for name, param in model.named_parameters():
assert hasattr(param, "colo_attr")
# the parameters in moe experts and its gate should not be sharded
if ("experts" in name) or ("gate" in name) or ("residual_combine" in name):
assert not param.colo_attr.sharded_data_tensor.is_sharded, "`{}` parameter has problem".format(name)
else:
assert param.colo_attr.sharded_data_tensor.is_sharded
# the parameters in moe experts is not replicated
if "experts" in name:
assert not param.colo_attr.is_replicated
else:
assert param.colo_attr.is_replicated
if param.colo_attr.param_is_sharded:
assert (
param.colo_attr.data_payload.device.type == init_device.type
), f"{param.colo_attr.data_payload.device.type} vs. {init_device.type}"
else:
assert param.colo_attr.data_payload.device.type == "cuda"
def _run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
MOE_CONTEXT.setup(seed=42)
run_moe_zero_init()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2, 4])
@rerun_if_address_is_in_use()
def test_moe_zero_init(world_size):
spawn(_run_dist, world_size)
if __name__ == "__main__":
test_moe_zero_init(world_size=2)