Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

95 lines
2.7 KiB

import os
from pathlib import Path
import pytest
import torch
import torch.nn as nn
from torch.optim import Adam
from torchvision import transforms
from torchvision.datasets import CIFAR10
from torchvision.models import resnet18
import colossalai
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.utils import get_dataloader
from colossalai.logging import get_dist_logger
from colossalai.testing import rerun_if_address_is_in_use, spawn
# Config
BATCH_SIZE = 2
NUM_CLASSES = 10
CONFIG = dict(
parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)), clip_grad_norm=1.0, gradient_accumulation=4
)
def run_no_pipeline(rank, world_size, port):
# init dist env
colossalai.legacy.launch(
config=CONFIG, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl"
)
# build model
model = resnet18(num_classes=10)
# build dataloaders
train_dataset = CIFAR10(
root=Path(os.environ["DATA"]),
download=True,
transform=transforms.Compose(
[transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))]
),
)
train_dataloader = get_dataloader(
dataset=train_dataset, shuffle=True, batch_size=BATCH_SIZE, pin_memory=True, drop_last=True
)
# build optimizer
optimizer = Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
engine, train_dataloader, *args = colossalai.legacy.initialize(
model=model, optimizer=optimizer, criterion=criterion, train_dataloader=train_dataloader
)
get_dist_logger()
rank = torch.distributed.get_rank()
param_track = []
grad_track = []
next(model.parameters()).retain_grad()
engine.train()
step = 0
for img, label in train_dataloader:
engine.zero_grad()
img = img.cuda()
label = label.cuda()
output = engine(img)
loss = engine.criterion(output, label)
engine.backward(loss)
engine.step()
# check
param_track.append(next(model.parameters())[0].clone())
grad_track.append(next(model.parameters()).grad[0].clone())
step += 1
if step == CONFIG["gradient_accumulation"]:
break
assert not torch.all(grad_track[0] == grad_track[-1]), "grad should be different in different iterations"
assert torch.all(param_track[0] == param_track[1]) and not torch.all(
param_track[0] == param_track[-1]
), "param should be the same in the first few iterations and only changed in the last iteration"
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_engine():
spawn(run_no_pipeline, 4)
if __name__ == "__main__":
test_engine()