mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
95 lines
2.7 KiB
95 lines
2.7 KiB
import os |
|
from pathlib import Path |
|
|
|
import pytest |
|
import torch |
|
import torch.nn as nn |
|
from torch.optim import Adam |
|
from torchvision import transforms |
|
from torchvision.datasets import CIFAR10 |
|
from torchvision.models import resnet18 |
|
|
|
import colossalai |
|
from colossalai.legacy.core import global_context as gpc |
|
from colossalai.legacy.utils import get_dataloader |
|
from colossalai.logging import get_dist_logger |
|
from colossalai.testing import rerun_if_address_is_in_use, spawn |
|
|
|
# Config |
|
BATCH_SIZE = 2 |
|
NUM_CLASSES = 10 |
|
|
|
CONFIG = dict( |
|
parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)), clip_grad_norm=1.0, gradient_accumulation=4 |
|
) |
|
|
|
|
|
def run_no_pipeline(rank, world_size, port): |
|
# init dist env |
|
colossalai.legacy.launch( |
|
config=CONFIG, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl" |
|
) |
|
|
|
# build model |
|
model = resnet18(num_classes=10) |
|
|
|
# build dataloaders |
|
train_dataset = CIFAR10( |
|
root=Path(os.environ["DATA"]), |
|
download=True, |
|
transform=transforms.Compose( |
|
[transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))] |
|
), |
|
) |
|
train_dataloader = get_dataloader( |
|
dataset=train_dataset, shuffle=True, batch_size=BATCH_SIZE, pin_memory=True, drop_last=True |
|
) |
|
|
|
# build optimizer |
|
optimizer = Adam(model.parameters(), lr=0.001) |
|
criterion = nn.CrossEntropyLoss() |
|
|
|
engine, train_dataloader, *args = colossalai.legacy.initialize( |
|
model=model, optimizer=optimizer, criterion=criterion, train_dataloader=train_dataloader |
|
) |
|
get_dist_logger() |
|
rank = torch.distributed.get_rank() |
|
param_track = [] |
|
grad_track = [] |
|
next(model.parameters()).retain_grad() |
|
|
|
engine.train() |
|
step = 0 |
|
for img, label in train_dataloader: |
|
engine.zero_grad() |
|
img = img.cuda() |
|
label = label.cuda() |
|
output = engine(img) |
|
loss = engine.criterion(output, label) |
|
engine.backward(loss) |
|
engine.step() |
|
|
|
# check |
|
param_track.append(next(model.parameters())[0].clone()) |
|
grad_track.append(next(model.parameters()).grad[0].clone()) |
|
step += 1 |
|
if step == CONFIG["gradient_accumulation"]: |
|
break |
|
|
|
assert not torch.all(grad_track[0] == grad_track[-1]), "grad should be different in different iterations" |
|
assert torch.all(param_track[0] == param_track[1]) and not torch.all( |
|
param_track[0] == param_track[-1] |
|
), "param should be the same in the first few iterations and only changed in the last iteration" |
|
|
|
gpc.destroy() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
@pytest.mark.dist |
|
@rerun_if_address_is_in_use() |
|
def test_engine(): |
|
spawn(run_no_pipeline, 4) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_engine()
|
|
|