mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
93 lines
3.5 KiB
93 lines
3.5 KiB
import copy |
|
|
|
import pytest |
|
import torch |
|
|
|
import colossalai |
|
from colossalai.legacy.amp import convert_to_apex_amp, convert_to_torch_amp |
|
from colossalai.testing import assert_close_loose, clear_cache_before_run, rerun_if_address_is_in_use, spawn |
|
from tests.components_to_test.registry import non_distributed_component_funcs |
|
|
|
|
|
def run_torch_amp(): |
|
""" |
|
In this test, we compare the torch amp and apex amp implemented in colossalai |
|
""" |
|
|
|
torch.backends.cudnn.benchmark = False |
|
torch.backends.cudnn.deterministic = True |
|
|
|
# create layer |
|
test_models = ["resnet18", "simple_net"] |
|
for test_name in test_models: |
|
get_component_func = non_distributed_component_funcs.get_callable(test_name) |
|
model_builder, train_dataloader, _, optim_class, _ = get_component_func() |
|
|
|
# create model |
|
torch_amp_model = model_builder(checkpoint=True).cuda() |
|
apex_amp_model = copy.deepcopy(torch_amp_model) |
|
|
|
# create optimizer |
|
# we use SGD here, since the correctness of gradient clipping can't be tested with Adam |
|
torch_amp_optimizer = torch.optim.SGD(torch_amp_model.parameters(), lr=1e-3) |
|
apex_amp_optimizer = torch.optim.SGD(apex_amp_model.parameters(), lr=1e-3) |
|
|
|
# inject torch and apex amp |
|
torch_amp_config = dict(init_scale=128, enabled=True) |
|
torch_amp_model, torch_amp_optimizer, _ = convert_to_torch_amp( |
|
torch_amp_model, torch_amp_optimizer, amp_config=torch_amp_config |
|
) |
|
apex_amp_config = dict(opt_level="O1", loss_scale=128) |
|
apex_amp_model, apex_amp_optimizer = convert_to_apex_amp(apex_amp_model, apex_amp_optimizer, apex_amp_config) |
|
|
|
# create data |
|
data_iter = iter(train_dataloader) |
|
data, label = next(data_iter) |
|
data = data.cuda() |
|
|
|
# forward pass |
|
torch_amp_output = torch_amp_model(data) |
|
apex_amp_output = apex_amp_model(data) |
|
assert_close_loose(torch_amp_output, apex_amp_output) |
|
|
|
for torch_amp_param, apex_amp_param in zip(torch_amp_model.parameters(), apex_amp_model.parameters()): |
|
assert_close_loose(torch_amp_param, apex_amp_param) |
|
|
|
# backward |
|
# use sum() to get big gradient |
|
torch_amp_optimizer.backward(torch_amp_output.sum()) |
|
apex_amp_optimizer.backward(apex_amp_output.sum()) |
|
|
|
# check grad |
|
# In apex amp, grad is not scaled before backward, but torch amp does |
|
for torch_amp_param, apex_amp_param in zip(torch_amp_model.parameters(), apex_amp_model.parameters()): |
|
assert_close_loose(torch_amp_param.grad, apex_amp_param.grad * apex_amp_config["loss_scale"]) |
|
|
|
# clip gradient |
|
apex_amp_optimizer.clip_grad_norm(model=apex_amp_model, max_norm=1.0) |
|
torch_amp_optimizer.clip_grad_norm(model=torch_amp_model, max_norm=1.0) |
|
|
|
# step |
|
torch_amp_optimizer.step() |
|
apex_amp_optimizer.step() |
|
|
|
# check updated param and grad |
|
for torch_amp_param, apex_amp_param in zip(torch_amp_model.parameters(), apex_amp_model.parameters()): |
|
assert_close_loose(torch_amp_param.grad, apex_amp_param.grad) |
|
assert_close_loose(torch_amp_param, apex_amp_param) |
|
|
|
|
|
def run_dist(rank, world_size, port): |
|
colossalai.legacy.launch(config=dict(), rank=rank, world_size=world_size, port=port, host="localhost") |
|
run_torch_amp() |
|
|
|
|
|
@pytest.mark.dist |
|
@rerun_if_address_is_in_use() |
|
@clear_cache_before_run() |
|
def test_torch_amp(): |
|
spawn(run_dist, 1) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_torch_amp()
|
|
|