Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

39 lines
1.1 KiB

import pytest
import torch
from packaging import version
try:
pass
from colossalai.kernel.triton.copy_kv_cache_dest import copy_kv_cache_to_dest
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
@pytest.mark.skipif(
not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4"
)
def test_kv_cache_copy_op():
B_NTX = 32 * 2048
head_num = 8
head_dim = 64
cache = torch.randn((B_NTX, head_num, head_dim), device="cuda", dtype=torch.float16)
dest_index = torch.arange(0, B_NTX, device="cuda", dtype=torch.int32)
dest_data = torch.ones((B_NTX, head_num, head_dim), device="cuda", dtype=torch.float16)
copy_kv_cache_to_dest(cache, dest_index, dest_data)
assert torch.allclose(
cache.cpu(), dest_data.cpu(), rtol=1e-3, atol=1e-3
), "copy_kv_cache_to_dest outputs from triton and torch are not matched"
if __name__ == "__main__":
test_kv_cache_copy_op()