mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
58 lines
1.6 KiB
58 lines
1.6 KiB
#!/usr/bin/env python |
|
# -*- encoding: utf-8 -*- |
|
|
|
import pytest |
|
import torch |
|
from torch.fx import symbolic_trace |
|
|
|
from colossalai.fx.passes import column_shard_linear_pass |
|
from colossalai.initialize import launch |
|
from colossalai.legacy.core import global_context as gpc |
|
from colossalai.logging import disable_existing_loggers |
|
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn |
|
|
|
|
|
class MLP(torch.nn.Module): |
|
def __init__(self, dim: int): |
|
super().__init__() |
|
self.linear1 = torch.nn.Linear(dim, dim) |
|
self.linear2 = torch.nn.Linear(dim, dim) |
|
self.linear3 = torch.nn.Linear(dim, dim) |
|
self.linear4 = torch.nn.Linear(dim, dim) |
|
|
|
def forward(self, x): |
|
x = self.linear1(x) |
|
x = self.linear2(x) |
|
x = self.linear3(x) |
|
x = self.linear4(x) |
|
return x |
|
|
|
|
|
CONFIG = dict(parallel=dict(tensor=dict(mode="1d", size=2))) |
|
|
|
|
|
def check_layer(rank, world_size, port): |
|
disable_existing_loggers() |
|
launch(config=CONFIG, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") |
|
input_tensor = torch.rand(2, 16).cuda() |
|
model = MLP(16).cuda() |
|
symbolic_traced = symbolic_trace(model) |
|
output = model(input_tensor) |
|
splitted_gm = column_shard_linear_pass(symbolic_traced) |
|
new_output = splitted_gm(input_tensor) |
|
|
|
assert output.equal(new_output) |
|
|
|
gpc.destroy() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
@pytest.mark.dist |
|
@clear_cache_before_run() |
|
@rerun_if_address_is_in_use() |
|
def test_1d(): |
|
spawn(check_layer, 2) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_1d()
|
|
|