Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

58 lines
1.6 KiB

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import pytest
import torch
from torch.fx import symbolic_trace
from colossalai.fx.passes import column_shard_linear_pass
from colossalai.initialize import launch
from colossalai.legacy.core import global_context as gpc
from colossalai.logging import disable_existing_loggers
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
class MLP(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.linear1 = torch.nn.Linear(dim, dim)
self.linear2 = torch.nn.Linear(dim, dim)
self.linear3 = torch.nn.Linear(dim, dim)
self.linear4 = torch.nn.Linear(dim, dim)
def forward(self, x):
x = self.linear1(x)
x = self.linear2(x)
x = self.linear3(x)
x = self.linear4(x)
return x
CONFIG = dict(parallel=dict(tensor=dict(mode="1d", size=2)))
def check_layer(rank, world_size, port):
disable_existing_loggers()
launch(config=CONFIG, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
input_tensor = torch.rand(2, 16).cuda()
model = MLP(16).cuda()
symbolic_traced = symbolic_trace(model)
output = model(input_tensor)
splitted_gm = column_shard_linear_pass(symbolic_traced)
new_output = splitted_gm(input_tensor)
assert output.equal(new_output)
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
@clear_cache_before_run()
@rerun_if_address_is_in_use()
def test_1d():
spawn(check_layer, 2)
if __name__ == "__main__":
test_1d()