mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
30 lines
1.1 KiB
30 lines
1.1 KiB
import pytest |
|
|
|
from colossalai.device import AlphaBetaProfiler |
|
from colossalai.initialize import launch |
|
from colossalai.logging import disable_existing_loggers |
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn |
|
|
|
|
|
def check_alpha_beta(rank, world_size, port, physical_devices): |
|
disable_existing_loggers() |
|
launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") |
|
profiler = AlphaBetaProfiler(physical_devices) |
|
best_logical_mesh = profiler.search_best_logical_mesh() |
|
|
|
if physical_devices == [0, 1, 2, 3]: |
|
assert best_logical_mesh == [[0, 1], [2, 3]] |
|
elif physical_devices == [0, 3]: |
|
assert best_logical_mesh == [[0, 3]] |
|
|
|
|
|
@pytest.mark.skip(reason="Skip because assertion may fail for CI devices") |
|
@pytest.mark.dist |
|
@parameterize("physical_devices", [[0, 1, 2, 3], [0, 3]]) |
|
@rerun_if_address_is_in_use() |
|
def test_profile_alpha_beta(physical_devices): |
|
spawn(check_alpha_beta, 4, physical_devices=physical_devices) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_profile_alpha_beta()
|
|
|