mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
154 lines
6.1 KiB
154 lines
6.1 KiB
import os |
|
|
|
import pytest |
|
import torch |
|
import torch.distributed as dist |
|
from transformers import LlamaForCausalLM |
|
from utils import shared_tempdir |
|
|
|
import colossalai |
|
from colossalai.booster import Booster |
|
from colossalai.booster.plugin import GeminiPlugin |
|
from colossalai.lazy import LazyInitContext |
|
from colossalai.nn.optimizer import HybridAdam |
|
from colossalai.testing import ( |
|
check_state_dict_equal, |
|
clear_cache_before_run, |
|
parameterize, |
|
rerun_if_address_is_in_use, |
|
spawn, |
|
) |
|
from tests.kit.model_zoo import model_zoo |
|
|
|
MODEL_PLACEMENT_CONFIGS = [ |
|
{"placement_policy": "static", "shard_param_frac": 0.0}, # zero2 |
|
{"placement_policy": "static", "shard_param_frac": 1.0}, # zero3 |
|
{"placement_policy": "static", "shard_param_frac": 0.5}, # zero3-half |
|
] |
|
|
|
OPTIM_PLACEMENT_CONFIGS = [ |
|
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.0}, # zero2 |
|
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 1.0}, # zero2-offload |
|
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.5}, # zero2-offload-half |
|
] |
|
|
|
|
|
@clear_cache_before_run() |
|
@parameterize("placement_config", MODEL_PLACEMENT_CONFIGS) |
|
@parameterize("model_name", ["transformers_bert_for_sequence_classification"]) |
|
@parameterize("use_safetensors", [False, True]) |
|
def exam_state_dict_with_origin(placement_config, model_name, use_safetensors: bool): |
|
from transformers import BertForSequenceClassification |
|
|
|
(model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values())) |
|
bert_model = model_fn() |
|
|
|
with shared_tempdir() as tempdir: |
|
pretrained_path = os.path.join(tempdir, "pretrained") |
|
bert_model.config.save_pretrained(save_directory=pretrained_path) |
|
|
|
plugin = GeminiPlugin(**placement_config) |
|
booster = Booster(plugin=plugin) |
|
bert_model, _, _, _, _ = booster.boost(bert_model) |
|
model_size = sum(p.numel() * p.element_size() for p in bert_model.parameters()) / 1024**2 |
|
|
|
booster.save_model( |
|
bert_model, pretrained_path, True, True, "", (model_size / 3), use_safetensors=use_safetensors |
|
) |
|
dist.barrier() |
|
|
|
new_bert_model = BertForSequenceClassification.from_pretrained(pretrained_path) |
|
check_state_dict_equal(bert_model.state_dict(only_rank_0=False), new_bert_model.state_dict(), False) |
|
|
|
|
|
@clear_cache_before_run() |
|
@parameterize("placement_config", OPTIM_PLACEMENT_CONFIGS) |
|
@parameterize("shard", [False, True]) |
|
@parameterize("model_name", ["transformers_gpt"]) |
|
@parameterize("size_per_shard", [32]) |
|
def exam_state_dict(placement_config, shard: bool, model_name: str, size_per_shard: int): |
|
(model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values())) |
|
criterion = lambda x: x.mean() |
|
plugin = GeminiPlugin(**placement_config, precision="fp16", initial_scale=(2**14)) |
|
booster = Booster(plugin=plugin) |
|
|
|
model = model_fn() |
|
new_model = model_fn() |
|
optimizer = HybridAdam(model.parameters(), lr=0.001) |
|
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion) |
|
new_optimizer = HybridAdam(new_model.parameters(), lr=0.001) |
|
new_model, new_optimizer, criterion, _, _ = booster.boost(new_model, new_optimizer, criterion) |
|
|
|
data = data_gen_fn() |
|
data = {k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items()} |
|
output = model(**data) |
|
output = output_transform_fn(output) |
|
output_key = list(output.keys())[0] |
|
loss = criterion(output[output_key]) |
|
|
|
booster.backward(loss, optimizer) |
|
optimizer.step() |
|
|
|
with shared_tempdir() as tempdir: |
|
model_ckpt_path = f"{tempdir}/model" |
|
optimizer_ckpt_path = f"{tempdir}/optimizer" |
|
booster.save_model(model, model_ckpt_path, shard=shard, size_per_shard=size_per_shard) |
|
|
|
booster.save_optimizer(optimizer, optimizer_ckpt_path, shard=shard, size_per_shard=size_per_shard) |
|
dist.barrier() |
|
|
|
booster.load_model(new_model, model_ckpt_path) |
|
check_state_dict_equal( |
|
model.state_dict(only_rank_0=False), new_model.state_dict(only_rank_0=False), False, ignore_dtype=True |
|
) |
|
|
|
booster.load_optimizer(new_optimizer, optimizer_ckpt_path) |
|
check_state_dict_equal( |
|
optimizer.state_dict(only_rank_0=False), new_optimizer.state_dict(only_rank_0=False), False |
|
) |
|
|
|
# Check the new model/optimizer can successfully run. |
|
data = data_gen_fn() |
|
data = { |
|
k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items() |
|
} |
|
output = new_model(**data) |
|
output = output_transform_fn(output) |
|
output_key = list(output.keys())[0] |
|
loss = criterion(output[output_key]) |
|
booster.backward(loss, new_optimizer) |
|
new_optimizer.step() |
|
booster.save_model(new_model, model_ckpt_path, shard=shard) |
|
booster.save_optimizer(new_optimizer, optimizer_ckpt_path, shard=shard) |
|
|
|
|
|
def exam_lazy_from_pretrained(): |
|
llama_path = os.environ["LLAMA_PATH"] |
|
plugin = GeminiPlugin() |
|
booster = Booster(plugin=plugin) |
|
orig_model = LlamaForCausalLM.from_pretrained(llama_path) |
|
orig_state_dict = {k: v.half() for k, v in orig_model.state_dict().items()} |
|
with LazyInitContext(): |
|
model = LlamaForCausalLM.from_pretrained(llama_path) |
|
model, *_ = booster.boost(model) |
|
with shared_tempdir() as tempdir: |
|
save_path = os.path.join(tempdir, "model.pt") |
|
booster.save_model(model, save_path, shard=False) |
|
dist.barrier() |
|
state_dict = torch.load(save_path, map_location="cpu") |
|
check_state_dict_equal(state_dict, orig_state_dict, False, ignore_dtype=True) |
|
|
|
|
|
def run_dist(rank, world_size, port): |
|
config = {} |
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") |
|
exam_state_dict() |
|
exam_state_dict_with_origin() |
|
exam_lazy_from_pretrained() |
|
|
|
|
|
@pytest.mark.dist |
|
@pytest.mark.parametrize("world_size", [2]) |
|
@rerun_if_address_is_in_use() |
|
def test_gemini_ckpIO(world_size): |
|
spawn(run_dist, world_size)
|
|
|