Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

154 lines
6.1 KiB

import os
import pytest
import torch
import torch.distributed as dist
from transformers import LlamaForCausalLM
from utils import shared_tempdir
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin
from colossalai.lazy import LazyInitContext
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import (
check_state_dict_equal,
clear_cache_before_run,
parameterize,
rerun_if_address_is_in_use,
spawn,
)
from tests.kit.model_zoo import model_zoo
MODEL_PLACEMENT_CONFIGS = [
{"placement_policy": "static", "shard_param_frac": 0.0}, # zero2
{"placement_policy": "static", "shard_param_frac": 1.0}, # zero3
{"placement_policy": "static", "shard_param_frac": 0.5}, # zero3-half
]
OPTIM_PLACEMENT_CONFIGS = [
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.0}, # zero2
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 1.0}, # zero2-offload
{"placement_policy": "static", "shard_param_frac": 0.0, "offload_optim_frac": 0.5}, # zero2-offload-half
]
@clear_cache_before_run()
@parameterize("placement_config", MODEL_PLACEMENT_CONFIGS)
@parameterize("model_name", ["transformers_bert_for_sequence_classification"])
@parameterize("use_safetensors", [False, True])
def exam_state_dict_with_origin(placement_config, model_name, use_safetensors: bool):
from transformers import BertForSequenceClassification
(model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values()))
bert_model = model_fn()
with shared_tempdir() as tempdir:
pretrained_path = os.path.join(tempdir, "pretrained")
bert_model.config.save_pretrained(save_directory=pretrained_path)
plugin = GeminiPlugin(**placement_config)
booster = Booster(plugin=plugin)
bert_model, _, _, _, _ = booster.boost(bert_model)
model_size = sum(p.numel() * p.element_size() for p in bert_model.parameters()) / 1024**2
booster.save_model(
bert_model, pretrained_path, True, True, "", (model_size / 3), use_safetensors=use_safetensors
)
dist.barrier()
new_bert_model = BertForSequenceClassification.from_pretrained(pretrained_path)
check_state_dict_equal(bert_model.state_dict(only_rank_0=False), new_bert_model.state_dict(), False)
@clear_cache_before_run()
@parameterize("placement_config", OPTIM_PLACEMENT_CONFIGS)
@parameterize("shard", [False, True])
@parameterize("model_name", ["transformers_gpt"])
@parameterize("size_per_shard", [32])
def exam_state_dict(placement_config, shard: bool, model_name: str, size_per_shard: int):
(model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values()))
criterion = lambda x: x.mean()
plugin = GeminiPlugin(**placement_config, precision="fp16", initial_scale=(2**14))
booster = Booster(plugin=plugin)
model = model_fn()
new_model = model_fn()
optimizer = HybridAdam(model.parameters(), lr=0.001)
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
new_optimizer = HybridAdam(new_model.parameters(), lr=0.001)
new_model, new_optimizer, criterion, _, _ = booster.boost(new_model, new_optimizer, criterion)
data = data_gen_fn()
data = {k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items()}
output = model(**data)
output = output_transform_fn(output)
output_key = list(output.keys())[0]
loss = criterion(output[output_key])
booster.backward(loss, optimizer)
optimizer.step()
with shared_tempdir() as tempdir:
model_ckpt_path = f"{tempdir}/model"
optimizer_ckpt_path = f"{tempdir}/optimizer"
booster.save_model(model, model_ckpt_path, shard=shard, size_per_shard=size_per_shard)
booster.save_optimizer(optimizer, optimizer_ckpt_path, shard=shard, size_per_shard=size_per_shard)
dist.barrier()
booster.load_model(new_model, model_ckpt_path)
check_state_dict_equal(
model.state_dict(only_rank_0=False), new_model.state_dict(only_rank_0=False), False, ignore_dtype=True
)
booster.load_optimizer(new_optimizer, optimizer_ckpt_path)
check_state_dict_equal(
optimizer.state_dict(only_rank_0=False), new_optimizer.state_dict(only_rank_0=False), False
)
# Check the new model/optimizer can successfully run.
data = data_gen_fn()
data = {
k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items()
}
output = new_model(**data)
output = output_transform_fn(output)
output_key = list(output.keys())[0]
loss = criterion(output[output_key])
booster.backward(loss, new_optimizer)
new_optimizer.step()
booster.save_model(new_model, model_ckpt_path, shard=shard)
booster.save_optimizer(new_optimizer, optimizer_ckpt_path, shard=shard)
def exam_lazy_from_pretrained():
llama_path = os.environ["LLAMA_PATH"]
plugin = GeminiPlugin()
booster = Booster(plugin=plugin)
orig_model = LlamaForCausalLM.from_pretrained(llama_path)
orig_state_dict = {k: v.half() for k, v in orig_model.state_dict().items()}
with LazyInitContext():
model = LlamaForCausalLM.from_pretrained(llama_path)
model, *_ = booster.boost(model)
with shared_tempdir() as tempdir:
save_path = os.path.join(tempdir, "model.pt")
booster.save_model(model, save_path, shard=False)
dist.barrier()
state_dict = torch.load(save_path, map_location="cpu")
check_state_dict_equal(state_dict, orig_state_dict, False, ignore_dtype=True)
def run_dist(rank, world_size, port):
config = {}
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
exam_state_dict()
exam_state_dict_with_origin()
exam_lazy_from_pretrained()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2])
@rerun_if_address_is_in_use()
def test_gemini_ckpIO(world_size):
spawn(run_dist, world_size)