Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

100 lines
3.3 KiB

from contextlib import nullcontext
from typing import Optional
import torch
import torch.distributed as dist
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import HybridParallelPlugin
from colossalai.fx import is_compatible_with_meta
from colossalai.lazy.lazy_init import LazyInitContext
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from tests.kit.model_zoo import model_zoo
def run_fn(init_method, model_fn, data_gen_fn, output_transform_fn) -> Optional[str]:
try:
if init_method == "lazy":
ctx = LazyInitContext()
else:
ctx = nullcontext()
plugin = HybridParallelPlugin(tp_size=2, pp_size=2, num_microbatches=4, precision="bf16")
booster = Booster(plugin=plugin)
with ctx:
model = model_fn()
optimizer = HybridAdam(model.parameters(), lr=1e-3)
criterion = lambda x: x.mean()
data = data_gen_fn()
data = {
k: v.to("cuda").repeat(4, 1) if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v
for k, v in data.items()
}
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
data_iter = iter([data])
def _criterion(outputs, inputs):
outputs = output_transform_fn(outputs)
output_key = list(outputs.keys())[0]
loss = criterion(outputs[output_key])
return loss
booster.execute_pipeline(data_iter, model, _criterion, optimizer, return_loss=True, return_outputs=False)
optimizer.step()
except Exception as e:
return repr(e)
@parameterize("init_method", ["none", "lazy"])
def check_3d_plugin(init_method: str = "none", early_stop: bool = True):
"""check gemini plugin over model zoo
Args:
early_stop (bool, optional): Whether to stop when getting the first error. Defaults to True.
"""
is_support_meta = is_compatible_with_meta()
if not is_support_meta and init_method == "lazy":
return
passed_models = []
failed_info = {} # (model_name, error) pair
# TODO(ver217): add more models
for name, (model_fn, data_gen_fn, output_transform_fn, _, _) in model_zoo.get_sub_registry(
"transformers_llama_for_casual_lm"
).items():
err = run_fn(init_method, model_fn, data_gen_fn, output_transform_fn)
torch.cuda.empty_cache()
if err is None:
passed_models.append(name)
else:
failed_info[name] = err
if early_stop:
break
if dist.get_rank() == 0:
print(f"Init method: {init_method}")
print(f"Passed models({len(passed_models)}): {passed_models}\n\n")
print(f"Failed models({len(failed_info)}): {list(failed_info.keys())}\n\n")
assert len(failed_info) == 0, "\n".join([f"{k}: {v}" for k, v in failed_info.items()])
def run_dist(rank, world_size, port, early_stop: bool = True):
# init dist env
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host="localhost")
check_3d_plugin(early_stop=early_stop)
@rerun_if_address_is_in_use()
def test_gemini_plugin(early_stop: bool = True):
spawn(run_dist, 4, early_stop=early_stop)
if __name__ == "__main__":
test_gemini_plugin(early_stop=False)