Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

93 lines
3.2 KiB

import torch
import torch.nn as nn
from transformers import BertConfig, BertLMHeadModel, GPT2Config, GPT2LMHeadModel
from tests.components_to_test.registry import non_distributed_component_funcs
class GPTLMModel(nn.Module):
def __init__(self, hidden_size=768, num_layers=12, num_attention_heads=12, max_seq_len=1024, vocab_size=50257):
super().__init__()
self.model = GPT2LMHeadModel(
GPT2Config(
n_embd=hidden_size,
n_layer=num_layers,
n_head=num_attention_heads,
n_positions=max_seq_len,
n_ctx=max_seq_len,
vocab_size=vocab_size,
)
)
def forward(self, input_ids, attention_mask):
# Only return lm_logits
return self.model(input_ids=input_ids, attention_mask=attention_mask, use_cache=True)[0]
class LMLoss(nn.Module):
def __init__(self):
super().__init__()
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, logits, labels):
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
class BertLMModel(nn.Module):
def __init__(self, hidden_size=768, num_layers=12, num_attention_heads=32, vocab_size=30522):
super().__init__()
self.model = BertLMHeadModel(
BertConfig(
n_embd=hidden_size,
num_hidden_layers=num_layers,
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
max_position_embeddings=hidden_size,
vocab_size=vocab_size,
)
)
def forward(self, input_ids, attention_mask):
# Only return lm_logits
return self.model(input_ids=input_ids, attention_mask=attention_mask, use_cache=True)[0]
@non_distributed_component_funcs.register(name="bert_")
def get_bert_components():
vocab_size = 1024
seq_len = 64
batchSize = 64
def bert_model_builder():
model = BertLMModel(hidden_size=8192, num_layers=4, num_attention_heads=32, vocab_size=vocab_size)
return model
def bert_data_gen(device="meta"):
input_ids = torch.randint(0, vocab_size, (batchSize, seq_len), device=device)
attention_mask = torch.ones_like(input_ids, device=device)
kwargs = dict(input_ids=input_ids, attention_mask=attention_mask)
return kwargs
return bert_model_builder, bert_data_gen
@non_distributed_component_funcs.register(name="gpt2_")
def get_gpt2_components():
vocab_size = 1024
seq_len = 8
batchSize = 64
def gpt2_model_builder():
model = GPTLMModel(hidden_size=8192, num_layers=2, num_attention_heads=32, vocab_size=vocab_size)
return model
def gpt2_data_gen(device="meta"):
input_ids = torch.randint(0, vocab_size, (batchSize, seq_len), device=device)
attention_mask = torch.ones_like(input_ids, device=device)
kwargs = dict(input_ids=input_ids, attention_mask=attention_mask)
return kwargs
return gpt2_model_builder, gpt2_data_gen