Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

70 lines
2.2 KiB

import torch
import transformers
from ..registry import ModelAttribute, model_zoo
# ===============================
# Register single-sentence VIT
# ===============================
config = transformers.ViTConfig(num_hidden_layers=4, hidden_size=128, intermediate_size=256, num_attention_heads=4)
# define data gen function
def data_gen():
pixel_values = torch.randn(1, 3, 224, 224)
return dict(pixel_values=pixel_values)
def data_gen_for_image_classification():
data = data_gen()
data["labels"] = torch.tensor([0])
return data
def data_gen_for_masked_image_modeling():
data = data_gen()
num_patches = (config.image_size // config.patch_size) ** 2
bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
data["bool_masked_pos"] = bool_masked_pos
return data
# define output transform function
output_transform_fn = lambda x: x
# function to get the loss
loss_fn_for_vit_model = lambda x: x.pooler_output.mean()
loss_fn_for_image_classification = lambda x: x.logits.mean()
loss_fn_for_masked_image_modeling = lambda x: x.loss
# register the following models
# transformers.ViTModel,
# transformers.ViTForMaskedImageModeling,
# transformers.ViTForImageClassification,
model_zoo.register(
name="transformers_vit",
model_fn=lambda: transformers.ViTModel(config),
data_gen_fn=data_gen,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_vit_model,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_vit_for_masked_image_modeling",
model_fn=lambda: transformers.ViTForMaskedImageModeling(config),
data_gen_fn=data_gen_for_masked_image_modeling,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_masked_image_modeling,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_vit_for_image_classification",
model_fn=lambda: transformers.ViTForImageClassification(config),
data_gen_fn=data_gen_for_image_classification,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_image_classification,
model_attribute=ModelAttribute(has_control_flow=True),
)