mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
92 lines
3.0 KiB
92 lines
3.0 KiB
import torch |
|
import transformers |
|
|
|
from ..registry import ModelAttribute, model_zoo |
|
|
|
# =============================== |
|
# Register single-sentence OPT |
|
# =============================== |
|
BATCH_SIZE = 2 |
|
SEQ_LENGTH = 16 |
|
|
|
|
|
def data_gen(): |
|
input_ids = torch.Tensor([[1, 15043, 29892, 590, 11203, 338, 274, 1082]]).long() |
|
attention_mask = torch.Tensor([[1, 1, 1, 1, 1, 1, 1, 1]]).long() |
|
return dict(input_ids=input_ids, attention_mask=attention_mask) |
|
|
|
|
|
def data_gen_for_causal_lm(): |
|
# LM data gen |
|
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels` |
|
data = data_gen() |
|
labels = data["input_ids"].clone() |
|
data["labels"] = labels |
|
return data |
|
|
|
|
|
def data_gen_for_sequence_classification(): |
|
# LM data gen |
|
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels` |
|
data = data_gen() |
|
data["input_ids"].clone() |
|
data["labels"] = torch.tensor([1]) |
|
return data |
|
|
|
|
|
def data_gen_for_question_answering(): |
|
# LM data gen |
|
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels` |
|
data = data_gen() |
|
data["start_positions"] = torch.tensor([0]) |
|
data["end_positions"] = torch.tensor([1]) |
|
return data |
|
|
|
|
|
output_transform_fn = lambda x: x |
|
loss_fn_for_opt_model = lambda x: torch.nn.functional.mse_loss( |
|
x.last_hidden_state, torch.ones_like(x.last_hidden_state) |
|
) |
|
loss_fn_for_lm = lambda x: x.loss |
|
config = transformers.OPTConfig( |
|
hidden_size=128, |
|
num_hidden_layers=2, |
|
num_attention_heads=4, |
|
dropout=0, |
|
) |
|
|
|
# register the following models |
|
# transformers.OPTModel, |
|
# transformers.OPTForCausalLM, |
|
model_zoo.register( |
|
name="transformers_opt", |
|
model_fn=lambda: transformers.OPTModel(config), |
|
data_gen_fn=data_gen, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn_for_opt_model, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_opt_for_causal_lm", |
|
model_fn=lambda: transformers.OPTForCausalLM(config), |
|
data_gen_fn=data_gen_for_causal_lm, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn_for_lm, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_opt_for_question_answering", |
|
model_fn=lambda: transformers.OPTForQuestionAnswering(config), |
|
data_gen_fn=data_gen_for_question_answering, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn_for_lm, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
|
|
# TODO The loss and gradient check in the test are failing, to be fixed. |
|
# model_zoo.register(name='transformers_opt_for_sequence_classification', |
|
# model_fn=lambda: transformers.OPTForSequenceClassification(config), |
|
# data_gen_fn=data_gen_for_sequence_classification, |
|
# output_transform_fn=output_transform_fn, |
|
# loss_fn=loss_fn_for_lm, |
|
# model_attribute=ModelAttribute(has_control_flow=True))
|
|
|