mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
53 lines
1.6 KiB
53 lines
1.6 KiB
import torch |
|
import torch.nn as nn |
|
|
|
from colossalai.legacy.nn import CheckpointModule |
|
from colossalai.utils.cuda import get_current_device |
|
|
|
from .registry import non_distributed_component_funcs |
|
from .utils.dummy_data_generator import DummyDataGenerator |
|
|
|
|
|
class SimpleNet(CheckpointModule): |
|
""" |
|
In this no-leaf module, it has subordinate nn.modules and a nn.Parameter. |
|
""" |
|
|
|
def __init__(self, checkpoint=False) -> None: |
|
super().__init__(checkpoint=checkpoint) |
|
self.embed = nn.Embedding(20, 4) |
|
self.proj1 = nn.Linear(4, 8) |
|
self.ln1 = nn.LayerNorm(8) |
|
self.proj2 = nn.Linear(8, 4) |
|
self.ln2 = nn.LayerNorm(4) |
|
self.classifier = nn.Linear(4, 4) |
|
|
|
def forward(self, x): |
|
x = self.embed(x) |
|
x = self.proj1(x) |
|
x = self.ln1(x) |
|
x = self.proj2(x) |
|
x = self.ln2(x) |
|
x = self.classifier(x) |
|
return x |
|
|
|
|
|
class DummyDataLoader(DummyDataGenerator): |
|
def generate(self): |
|
data = torch.randint(low=0, high=20, size=(16,), device=get_current_device()) |
|
label = torch.randint(low=0, high=2, size=(16,), device=get_current_device()) |
|
return data, label |
|
|
|
|
|
@non_distributed_component_funcs.register(name="simple_net") |
|
def get_training_components(): |
|
def model_builder(checkpoint=False): |
|
return SimpleNet(checkpoint) |
|
|
|
trainloader = DummyDataLoader() |
|
testloader = DummyDataLoader() |
|
|
|
criterion = torch.nn.CrossEntropyLoss() |
|
from colossalai.nn.optimizer import HybridAdam |
|
|
|
return model_builder, trainloader, testloader, HybridAdam, criterion
|
|
|