Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

49 lines
1.3 KiB

import torch
import torch.nn as nn
from colossalai.legacy.nn import CheckpointModule
from .registry import non_distributed_component_funcs
from .utils.dummy_data_generator import DummyDataGenerator
class InlineOpModule(CheckpointModule):
"""
a module with inline Ops
"""
def __init__(self, checkpoint=False) -> None:
super().__init__(checkpoint=checkpoint)
self.proj1 = nn.Linear(4, 8)
self.proj2 = nn.Linear(8, 8)
def forward(self, x):
x = self.proj1(x)
# inline add_
x.add_(10)
x = self.proj2(x)
# inline relu_
x = torch.relu_(x)
x = self.proj2(x)
return x
class DummyDataLoader(DummyDataGenerator):
def generate(self):
data = torch.rand(16, 4)
label = torch.randint(low=0, high=2, size=(16,))
return data, label
@non_distributed_component_funcs.register(name="inline_op_model")
def get_training_components():
def model_builder(checkpoint=False):
return InlineOpModule(checkpoint)
trainloader = DummyDataLoader()
testloader = DummyDataLoader()
criterion = torch.nn.CrossEntropyLoss()
from colossalai.nn.optimizer import HybridAdam
return model_builder, trainloader, testloader, HybridAdam, criterion