mirror of https://github.com/hpcaitech/ColossalAI
329 lines
13 KiB
Python
329 lines
13 KiB
Python
import copy
|
|
from typing import Any, Callable, Dict, Iterable, List, Tuple
|
|
|
|
import torch
|
|
from torch.fx.node import Node, map_arg
|
|
|
|
from colossalai.fx.profiler import activation_size, parameter_size
|
|
|
|
from .utils import (
|
|
delete_free_var_from_last_use,
|
|
find_idx_by_name,
|
|
get_node_shape,
|
|
is_non_compute_node_except_placeholder,
|
|
)
|
|
|
|
|
|
class EstimateMemory(object):
|
|
"""
|
|
Estimate memory with chunk
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
pass
|
|
|
|
def _get_meta_node_size(self, x):
|
|
x = x.meta["tensor_meta"]
|
|
x = x.numel * torch.tensor([], dtype=x.dtype).element_size()
|
|
return x
|
|
|
|
def _get_output_node(self, n):
|
|
out_size = activation_size(n.meta["fwd_out"])
|
|
out_node = [n.name] if out_size > 0 else []
|
|
return out_size, out_node
|
|
|
|
def _get_output_node_size(self, n):
|
|
return self._get_output_node(n)[0]
|
|
|
|
def _add_active_node(self, n, active_list):
|
|
new_active = self._get_output_node(n)[1]
|
|
if n.op == "placeholder":
|
|
new_active.append(n.name)
|
|
for i in new_active:
|
|
if i not in active_list:
|
|
active_list.append(i)
|
|
|
|
def _get_delete_node(self, user, user_to_last_uses, to_keep=None):
|
|
delete_size = 0
|
|
delete_node = []
|
|
if user.op not in ("output",):
|
|
nodes_to_delete = user_to_last_uses.get(user, [])
|
|
if to_keep is not None:
|
|
keep_list = []
|
|
for n in nodes_to_delete:
|
|
if n.name in to_keep:
|
|
keep_list.append(n)
|
|
for n in keep_list:
|
|
if n in nodes_to_delete:
|
|
nodes_to_delete.remove(n)
|
|
if len(nodes_to_delete):
|
|
out_node = [self._get_output_node(i) for i in nodes_to_delete]
|
|
delete_size = sum([i[0] for i in out_node])
|
|
for i in range(len(out_node)):
|
|
if out_node[i][0] > 0:
|
|
delete_node.append(out_node[i][1][0])
|
|
elif nodes_to_delete[i].op == "placeholder":
|
|
delete_node.append(nodes_to_delete[i].name)
|
|
# elif any(j in nodes_to_delete[i].name for j in ['transpose', 'permute', 'view']):
|
|
# delete_node.append(nodes_to_delete[i].name)
|
|
return delete_size, delete_node
|
|
|
|
def _get_delete_node_size(self, user, user_to_last_uses, to_keep):
|
|
return self._get_delete_node(user, user_to_last_uses, to_keep)[0]
|
|
|
|
def _remove_deactive_node(self, user, user_to_last_uses, active_list):
|
|
delete_node = self._get_delete_node(user, user_to_last_uses)[1]
|
|
for i in delete_node:
|
|
if i in active_list:
|
|
active_list.remove(i)
|
|
|
|
def _get_chunk_inputs_size(
|
|
self, chunk_inputs, chunk_inputs_non_chunk, node_list, chunk_end_idx
|
|
):
|
|
nodes_to_delete = []
|
|
for chunk_input in chunk_inputs + chunk_inputs_non_chunk:
|
|
chunk_input_users = chunk_input.users.keys()
|
|
chunk_input_users_idx = [
|
|
find_idx_by_name(i.name, node_list) for i in chunk_input_users
|
|
]
|
|
if all(i <= chunk_end_idx for i in chunk_input_users_idx):
|
|
if chunk_input not in nodes_to_delete:
|
|
nodes_to_delete.append(chunk_input)
|
|
out_node = [self._get_output_node(i) for i in nodes_to_delete]
|
|
delete_size = sum([i[0] for i in out_node])
|
|
return delete_size
|
|
|
|
def _get_last_usr(self, nodes):
|
|
node_to_last_use: Dict[Node, Node] = {}
|
|
user_to_last_uses: Dict[Node, List[Node]] = {}
|
|
|
|
def register_last_uses(n: Node, user: Node):
|
|
if n not in node_to_last_use:
|
|
node_to_last_use[n] = user
|
|
user_to_last_uses.setdefault(user, []).append(n)
|
|
|
|
for node in reversed(nodes):
|
|
map_arg(node.args, lambda n: register_last_uses(n, node))
|
|
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
|
|
return user_to_last_uses
|
|
|
|
def _get_contiguous_memory(self, node, not_contiguous_list, delete=False):
|
|
mem = 0
|
|
not_contiguous_ops = ["permute"]
|
|
inherit_contiguous_ops = ["transpose", "view"]
|
|
|
|
if node.op == "call_function" and any(
|
|
n in node.name for n in ["matmul", "reshape"]
|
|
):
|
|
for n in node.args:
|
|
if n in not_contiguous_list:
|
|
# matmul won't change origin tensor, but create a tmp copy
|
|
mem += self._get_output_node_size(n)
|
|
elif node.op == "call_module":
|
|
for n in node.args:
|
|
if n in not_contiguous_list:
|
|
# module will just make origin tensor to contiguous
|
|
if delete:
|
|
not_contiguous_list.remove(n)
|
|
elif node.op == "call_method" and any(
|
|
i in node.name for i in not_contiguous_ops
|
|
):
|
|
if node not in not_contiguous_list:
|
|
not_contiguous_list.append(node)
|
|
return mem
|
|
|
|
def _get_chunk_ratio(self, node, chunk_node_dim, chunk_size):
|
|
if node not in chunk_node_dim:
|
|
return 1.0
|
|
node_shape = get_node_shape(node)
|
|
chunk_dim = chunk_node_dim[node]["chunk_dim"]
|
|
if chunk_dim is None:
|
|
return 1.0
|
|
else:
|
|
return float(chunk_size) / node_shape[chunk_dim]
|
|
|
|
def _get_chunk_delete_node_size(
|
|
self, user, user_to_last_uses, chunk_ratio, chunk_inputs_names
|
|
):
|
|
# if any(j in user.name for j in ['transpose', 'permute', 'view']):
|
|
# return 0
|
|
if user.op in ("placeholder", "output"):
|
|
return 0
|
|
nodes_to_delete = user_to_last_uses.get(user, [])
|
|
delete_size = 0
|
|
for n in nodes_to_delete:
|
|
if n.name in chunk_inputs_names:
|
|
continue
|
|
delete_size += self._get_output_node_size(n) * chunk_ratio
|
|
return delete_size
|
|
|
|
def _print_mem_log(self, log, nodes, title=None):
|
|
if title:
|
|
print(title)
|
|
for idx, (l, n) in enumerate(zip(log, nodes)):
|
|
print("%s:%.2f \t" % (n.name, l), end="")
|
|
if (idx + 1) % 3 == 0:
|
|
print("")
|
|
print("\n")
|
|
|
|
def _print_compute_op_mem_log(self, log, nodes, title=None):
|
|
if title:
|
|
print(title)
|
|
for idx, (l, n) in enumerate(zip(log, nodes)):
|
|
if n.op in ["placeholder", "get_attr", "output"]:
|
|
continue
|
|
if any(i in n.name for i in ["getitem", "getattr"]):
|
|
continue
|
|
print("%s:%.2f \t" % (n.name, l), end="")
|
|
if (idx + 1) % 3 == 0:
|
|
print("")
|
|
print("\n")
|
|
|
|
def estimate_chunk_inference_mem(
|
|
self,
|
|
node_list: List,
|
|
chunk_infos=None,
|
|
print_mem=False,
|
|
):
|
|
"""
|
|
Estimate inference memory with chunk
|
|
|
|
Args:
|
|
node_list (List): _description_
|
|
chunk_infos (Dict): Chunk information. Defaults to None.
|
|
print_mem (bool): Wether to print peak memory of every node. Defaults to False.
|
|
|
|
Returns:
|
|
act_memory_peak_log (List): peak memory of every node
|
|
act_memory_after_node_log (List): memory after excuting every node
|
|
active_node_list_log (List): active nodes of every node. active nodes refer to
|
|
nodes generated but not deleted.
|
|
"""
|
|
act_memory = 0.0
|
|
act_memory_peak_log = []
|
|
act_memory_after_node_log = []
|
|
active_node_list = []
|
|
active_node_list_log = []
|
|
not_contiguous_list = []
|
|
user_to_last_uses = self._get_last_usr(node_list)
|
|
user_to_last_uses_no_free_var = self._get_last_usr(node_list)
|
|
delete_free_var_from_last_use(user_to_last_uses_no_free_var)
|
|
|
|
use_chunk = True if chunk_infos is not None else False
|
|
chunk_within = False
|
|
chunk_region_idx = None
|
|
chunk_ratio = 1 # use it to estimate chunk mem
|
|
chunk_inputs_names = []
|
|
|
|
if use_chunk:
|
|
chunk_regions = [i["region"] for i in chunk_infos]
|
|
chunk_starts = [i[0] for i in chunk_regions]
|
|
chunk_ends = [i[1] for i in chunk_regions]
|
|
chunk_inputs = [i["inputs"] for i in chunk_infos]
|
|
chunk_inputs_non_chunk = [i["inputs_non_chunk"] for i in chunk_infos]
|
|
chunk_inputs_names = [j.name for i in chunk_inputs for j in i] + [
|
|
j.name for i in chunk_inputs_non_chunk for j in i
|
|
]
|
|
chunk_outputs = [i["outputs"][0] for i in chunk_infos]
|
|
chunk_node_dim = [i["node_chunk_dim"] for i in chunk_infos]
|
|
chunk_sizes = [
|
|
i["chunk_size"] if "chunk_size" in i else 1 for i in chunk_infos
|
|
]
|
|
|
|
for idx, node in enumerate(node_list):
|
|
# if node in chunk start nodes, change chunk ratio and add chunk_tensor
|
|
if use_chunk and idx in chunk_starts:
|
|
chunk_within = True
|
|
chunk_region_idx = chunk_starts.index(idx)
|
|
act_memory += self._get_output_node_size(
|
|
chunk_outputs[chunk_region_idx]
|
|
) / (1024**2)
|
|
|
|
# determine chunk ratio for current node
|
|
if chunk_within:
|
|
chunk_ratio = self._get_chunk_ratio(
|
|
node,
|
|
chunk_node_dim[chunk_region_idx],
|
|
chunk_sizes[chunk_region_idx],
|
|
)
|
|
|
|
# if node is placeholder, just add the size of the node
|
|
if node.op == "placeholder":
|
|
act_memory += self._get_meta_node_size(node) * chunk_ratio / (1024**2)
|
|
act_memory_peak_log.append(act_memory)
|
|
# skip output
|
|
elif node.op == "output":
|
|
continue
|
|
# no change for non compute node
|
|
elif is_non_compute_node_except_placeholder(node):
|
|
act_memory_peak_log.append(act_memory)
|
|
# node is a compute op
|
|
# calculate tmp, output node and delete node memory
|
|
else:
|
|
# forward memory
|
|
# TODO: contiguous_memory still not accurate for matmul, view, reshape and transpose
|
|
act_memory += (
|
|
self._get_contiguous_memory(node, not_contiguous_list)
|
|
* chunk_ratio
|
|
/ (1024**2)
|
|
)
|
|
act_memory += (
|
|
self._get_output_node_size(node) * chunk_ratio / (1024**2)
|
|
)
|
|
# record max act memory
|
|
act_memory_peak_log.append(act_memory)
|
|
# delete useless memory
|
|
act_memory -= (
|
|
self._get_contiguous_memory(node, not_contiguous_list, delete=True)
|
|
* chunk_ratio
|
|
/ (1024**2)
|
|
)
|
|
# delete unused vars not in chunk_input_list
|
|
# we can't delete input nodes until chunk ends
|
|
if chunk_within:
|
|
act_memory -= self._get_chunk_delete_node_size(
|
|
node,
|
|
user_to_last_uses_no_free_var,
|
|
chunk_ratio,
|
|
chunk_inputs_names,
|
|
) / (1024**2)
|
|
else:
|
|
act_memory -= self._get_delete_node_size(
|
|
node, user_to_last_uses_no_free_var, chunk_inputs_names
|
|
) / (1024**2)
|
|
|
|
# log active node, only effective without chunk
|
|
self._add_active_node(node, active_node_list)
|
|
self._remove_deactive_node(node, user_to_last_uses, active_node_list)
|
|
|
|
# if node in chunk end nodes, restore chunk settings
|
|
if use_chunk and idx in chunk_ends:
|
|
act_memory -= (
|
|
self._get_output_node_size(node) * chunk_ratio / (1024**2)
|
|
)
|
|
act_memory -= self._get_chunk_inputs_size(
|
|
chunk_inputs[chunk_region_idx],
|
|
chunk_inputs_non_chunk[chunk_region_idx],
|
|
node_list,
|
|
chunk_regions[chunk_region_idx][1],
|
|
) / (1024**2)
|
|
chunk_within = False
|
|
chunk_ratio = 1
|
|
chunk_region_idx = None
|
|
|
|
act_memory_after_node_log.append(act_memory)
|
|
active_node_list_log.append(copy.deepcopy(active_node_list))
|
|
|
|
if print_mem:
|
|
print("with chunk" if use_chunk else "without chunk")
|
|
# self._print_mem_log(act_memory_peak_log, node_list, "peak")
|
|
# self._print_mem_log(act_memory_after_node_log, node_list, "after")
|
|
self._print_compute_op_mem_log(act_memory_peak_log, node_list, "peak")
|
|
# self._print_compute_op_mem_log(
|
|
# act_memory_after_node_log, node_list, "after"
|
|
# )
|
|
|
|
# param_memory = parameter_size(gm)
|
|
# all_memory = act_memory + param_memory
|
|
return act_memory_peak_log, act_memory_after_node_log, active_node_list_log
|