You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_fx/test_meta_info_prop.py

37 lines
1.0 KiB

import torch
import torch.nn as nn
import colossalai
import colossalai.nn as col_nn
from torch.fx import symbolic_trace
from colossalai.fx.passes.meta_info_prop import MetaInfoProp, TensorMetadata
import pytest
BATCH_SIZE = 2
DIM_IN = 4
DIM_OUT = 16
def meta_check(meta_info_spec: TensorMetadata, orig_tensor: torch.Tensor):
assert meta_info_spec.shape == orig_tensor.shape
assert meta_info_spec.dtype == orig_tensor.dtype
assert meta_info_spec.stride == orig_tensor.stride()
assert meta_info_spec.numel == orig_tensor.numel()
def test_meta_info_prop():
model = torch.nn.Linear(DIM_IN, DIM_OUT)
input_sample = torch.rand(BATCH_SIZE, DIM_IN, device='meta')
orig_output = model(input_sample)
gm = symbolic_trace(model)
MetaInfoProp(gm).run(input_sample)
for node in gm.graph.nodes:
if node.op == 'placeholder':
meta_check(node.meta['tensor_meta'], input_sample)
if node.op == 'output':
meta_check(node.meta['tensor_meta'], orig_output)
if __name__ == '__main__':
test_meta_info_prop()