mirror of https://github.com/hpcaitech/ColossalAI
158 lines
5.4 KiB
Plaintext
158 lines
5.4 KiB
Plaintext
#include <ATen/cuda/CUDAContext.h>
|
|
#include <torch/extension.h>
|
|
|
|
#include "../common/vector_copy_utils.h"
|
|
#include "../common/micros.h"
|
|
|
|
template<typename scalar_t, int VecSize>
|
|
__global__ void decode_kv_cache_memcpy_kernel(
|
|
const scalar_t* __restrict__ key,
|
|
const scalar_t* __restrict__ value,
|
|
scalar_t* __restrict__ key_cache,
|
|
scalar_t* __restrict__ value_cache,
|
|
const int* __restrict__ sequence_lengths,
|
|
const int* __restrict__ block_tables,
|
|
const int head_num,
|
|
const int head_dim,
|
|
const int block_size,
|
|
const int64_t key_stride,
|
|
const int64_t value_stride,
|
|
const int block_table_stride
|
|
)
|
|
{
|
|
const int seq_id = blockIdx.x;
|
|
const int seq_len = sequence_lengths[seq_id] - 1;
|
|
const int block_offset = seq_len % block_size;
|
|
const int block_id = block_tables[seq_id * block_table_stride + seq_len / block_size];
|
|
const int hidden_size = head_num * head_dim;
|
|
|
|
if ( block_id < 0 ) {
|
|
return ;
|
|
}
|
|
|
|
for (int i = threadIdx.x * VecSize; i < hidden_size; i += blockDim.x * VecSize) {
|
|
const int head_id = i / head_dim;
|
|
const int head_offset = i % head_dim;
|
|
const int64_t key_src_id = seq_id * key_stride + i;
|
|
const int64_t value_src_id = seq_id * value_stride + i;
|
|
const int64_t target_id = block_id * hidden_size * block_size
|
|
+ head_id * block_size * head_dim
|
|
+ block_offset * head_dim + head_offset;
|
|
|
|
copy_vector<scalar_t, VecSize>(key_cache + target_id, key + key_src_id);
|
|
copy_vector<scalar_t, VecSize>(value_cache + target_id, value + value_src_id);
|
|
}
|
|
|
|
}
|
|
|
|
template<typename scalar_t>
|
|
void apply_decode_kv_cache_memcpy(
|
|
at::Tensor& key, // [num_tokens, head_num, head_dim]
|
|
at::Tensor& value, // [num_tokens, head_num, head_dim]
|
|
at::Tensor& key_cache, // [num_blocks, head_num, block_size, head_dim]
|
|
at::Tensor& value_cache, // [num_blocks, head_num, block_size, head_dim]
|
|
at::Tensor& sequence_lengths, // [batch_size]
|
|
at::Tensor& block_tables) // [batch_size, max_seq_len]
|
|
{
|
|
int num_tokens = key.size(0);
|
|
int head_num = key.size(1);
|
|
int head_dim = key.size(2);
|
|
int block_size = key_cache.size(2);
|
|
|
|
int64_t key_stride = key.stride(0);
|
|
int64_t value_stride = value.stride(0);
|
|
int block_table_stride = block_tables.stride(0);
|
|
|
|
int vec_size = get_vec_size<scalar_t>(key);
|
|
|
|
if (head_dim % vec_size != 0) {
|
|
// Disable vectorized loading optimization when head_dim is not divisible by VecSize.
|
|
vec_size = 1;
|
|
}
|
|
|
|
int thread_nums = head_num * head_dim / vec_size;
|
|
|
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
|
dim3 grid(num_tokens);
|
|
dim3 block(std::min(thread_nums, 512));
|
|
|
|
switch (vec_size) {
|
|
case 1:
|
|
decode_kv_cache_memcpy_kernel<scalar_t, 1><<<grid, block, 0, stream>>>(
|
|
key.data_ptr<scalar_t>(),
|
|
value.data_ptr<scalar_t>(),
|
|
key_cache.data_ptr<scalar_t>(),
|
|
value_cache.data_ptr<scalar_t>(),
|
|
sequence_lengths.data_ptr<int>(),
|
|
block_tables.data_ptr<int>(),
|
|
head_num,
|
|
head_dim,
|
|
block_size,
|
|
key_stride,
|
|
value_stride,
|
|
block_table_stride
|
|
);
|
|
break;
|
|
case 2:
|
|
decode_kv_cache_memcpy_kernel<scalar_t, 2><<<grid, block, 0, stream>>>(
|
|
key.data_ptr<scalar_t>(),
|
|
value.data_ptr<scalar_t>(),
|
|
key_cache.data_ptr<scalar_t>(),
|
|
value_cache.data_ptr<scalar_t>(),
|
|
sequence_lengths.data_ptr<int>(),
|
|
block_tables.data_ptr<int>(),
|
|
head_num,
|
|
head_dim,
|
|
block_size,
|
|
key_stride,
|
|
value_stride,
|
|
block_table_stride
|
|
);
|
|
break;
|
|
case 4:
|
|
decode_kv_cache_memcpy_kernel<scalar_t, 4><<<grid, block, 0, stream>>>(
|
|
key.data_ptr<scalar_t>(),
|
|
value.data_ptr<scalar_t>(),
|
|
key_cache.data_ptr<scalar_t>(),
|
|
value_cache.data_ptr<scalar_t>(),
|
|
sequence_lengths.data_ptr<int>(),
|
|
block_tables.data_ptr<int>(),
|
|
head_num,
|
|
head_dim,
|
|
block_size,
|
|
key_stride,
|
|
value_stride,
|
|
block_table_stride
|
|
);
|
|
break;
|
|
default:
|
|
AT_ERROR("Unsupported vectorized size ", vec_size);
|
|
break;
|
|
}
|
|
|
|
AT_CUDA_CHECK(cudaGetLastError());
|
|
|
|
}
|
|
|
|
void decode_kv_cache_memcpy(
|
|
at::Tensor& key, // [num_tokens, head_num, head_dim]
|
|
at::Tensor& value, // [num_tokens, head_num, head_dim]
|
|
at::Tensor& key_cache, // [num_blocks, head_num, block_size, head_dim]
|
|
at::Tensor& value_cache, // [num_blocks, head_num, block_size, head_dim]
|
|
at::Tensor& sequence_lengths, // [batch_size]
|
|
at::Tensor& block_tables) // [batch_size, max_seq_len]
|
|
{
|
|
DISPATCH_FLOAT_HALF_AND_BFLOAT(
|
|
key.scalar_type(),
|
|
"decode_kv_cache_memcpy",
|
|
apply_decode_kv_cache_memcpy<scalar_t>(
|
|
key,
|
|
value,
|
|
key_cache,
|
|
value_cache,
|
|
sequence_lengths,
|
|
block_tables
|
|
);)
|
|
}
|