mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
183 lines
6.3 KiB
183 lines
6.3 KiB
import gc |
|
from collections import namedtuple |
|
|
|
import psutil |
|
import torch |
|
import torch.distributed as dist |
|
from packaging import version |
|
|
|
from colossalai.accelerator import get_accelerator |
|
from colossalai.legacy.core import global_context as gpc |
|
from colossalai.logging import get_dist_logger |
|
|
|
_GLOBAL_CUDA_MEM_FRACTION = 1.0 |
|
_GLOBAL_CPU_MEM_CAPACITY = -1 |
|
|
|
|
|
def _bytes_to_MB(val, decimal=2): |
|
"""A byte-to-Megabyte converter, default using binary notation. |
|
|
|
:param val: X bytes to convert |
|
:return: X' MB |
|
""" |
|
return round(val / (1024 * 1024), decimal) |
|
|
|
|
|
# copy from PatrickStar |
|
def _get_cpu_memory_info(): |
|
ps_mem_info = namedtuple("ps_mem_info", ["total", "free", "cached", "buffers", "used"]) |
|
try: |
|
# psutil reads the memory info from /proc/memory_info, |
|
# which results in returning the host memory instead of |
|
# that of container. |
|
# Here we try to read the container memory with method in: |
|
# https://stackoverflow.com/a/46213331/5163915 |
|
mems = {} |
|
with open("/sys/fs/cgroup/memory/memory.meminfo", "rb") as f: |
|
for line in f: |
|
fields = line.split() |
|
mems[fields[0]] = int(fields[1]) * 1024 |
|
total = mems[b"MemTotal:"] |
|
free = mems[b"MemFree:"] |
|
cached = mems[b"Cached:"] |
|
buffers = mems[b"Buffers:"] |
|
used = total - free - cached - buffers |
|
if used < 0: |
|
used = total - free |
|
mem_info = ps_mem_info(total=total, free=free, cached=cached, buffers=buffers, used=used) |
|
except FileNotFoundError: |
|
mems = psutil.virtual_memory() |
|
mem_info = ps_mem_info( |
|
total=mems.total, |
|
free=mems.free, |
|
cached=mems.cached, |
|
buffers=mems.buffers, |
|
used=mems.used, |
|
) |
|
return mem_info |
|
|
|
|
|
def report_memory_usage(message, logger=None, report_cpu=False): |
|
"""Calculate and print RAM usage (in GB) |
|
|
|
Args: |
|
message (str): A prefix message to add in the log. |
|
logger (:class:`colossalai.logging.DistributedLogger`): The logger used to record memory information. |
|
report_cpu (bool, optional): Whether to report CPU memory. |
|
|
|
Raises: |
|
EnvironmentError: Raise error if no distributed environment has been initialized. |
|
""" |
|
if not dist.is_initialized(): |
|
raise EnvironmentError("No distributed environment is initialized") |
|
|
|
gpu_allocated = _bytes_to_MB(torch.cuda.memory_allocated()) |
|
gpu_max_allocated = _bytes_to_MB(torch.cuda.max_memory_allocated()) |
|
gpu_cached = _bytes_to_MB(torch.cuda.memory_reserved()) |
|
gpu_max_cached = _bytes_to_MB(torch.cuda.max_memory_reserved()) |
|
|
|
full_log = ( |
|
f"{message}: GPU: allocated {gpu_allocated} MB, max allocated {gpu_max_allocated} MB, " |
|
+ f"cached: {gpu_cached} MB, max cached: {gpu_max_cached} MB" |
|
) |
|
|
|
if report_cpu: |
|
# python doesn't do real-time garbage collection so do it explicitly to get the correct RAM reports |
|
gc.collect() |
|
vm_stats = psutil.virtual_memory() |
|
vm_used = _bytes_to_MB(vm_stats.total - vm_stats.available) |
|
full_log += f", CPU Virtual Memory: used = {vm_used} MB, percent = {vm_stats.percent}%" |
|
|
|
if logger is None: |
|
logger = get_dist_logger() |
|
logger.info(full_log) |
|
|
|
# get the peak memory to report correct data, so reset the counter for the next call |
|
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+ |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
|
|
def colo_device_memory_capacity(device: torch.device) -> int: |
|
""" |
|
Get the capacity of the memory of the device |
|
|
|
Args: |
|
device (torch.device): a device |
|
|
|
Returns: |
|
int: size in byte |
|
""" |
|
assert isinstance(device, torch.device) |
|
if device.type == "cpu": |
|
# In the context of 1-CPU-N-GPU, the memory capacity of the current process is 1/N overall CPU memory. |
|
return colo_get_cpu_memory_capacity() / gpc.num_processes_on_current_node |
|
if device.type == "cuda": |
|
return ( |
|
torch.cuda.get_device_properties(get_accelerator().get_current_device()).total_memory |
|
* _GLOBAL_CUDA_MEM_FRACTION |
|
) |
|
|
|
|
|
def colo_device_memory_used(device: torch.device) -> int: |
|
""" |
|
Get the device memory on device belonging to the current process. |
|
|
|
Args: |
|
device (torch.device): a device |
|
|
|
Returns: |
|
int: memory size in bytes |
|
""" |
|
if device.type == "cpu": |
|
mem_info = _get_cpu_memory_info() |
|
# In the context of 1-CPU-N-GPU, the memory usage of the current process is 1/N CPU memory used. |
|
# Each process consumes the same amount of memory. |
|
ret = mem_info.used / gpc.num_processes_on_current_node |
|
return ret |
|
elif device.type == "cuda": |
|
ret: int = torch.cuda.memory_allocated(device) |
|
# get the peak memory to report correct data, so reset the counter for the next call |
|
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+ |
|
torch.cuda.reset_peak_memory_stats(device) |
|
return ret |
|
|
|
|
|
def colo_set_process_memory_fraction(ratio: float) -> None: |
|
"""colo_set_process_memory_fraction |
|
|
|
set how much cuda memory used on the gpu belonging to the current process. |
|
|
|
Args: |
|
ratio (float): a ratio between 0. ~ 1. |
|
""" |
|
if version.parse(torch.__version__) < version.parse("1.8"): |
|
logger = get_dist_logger("colo_set_process_memory_fraction") |
|
logger.warning("colo_set_process_memory_fraction failed because torch version is less than 1.8") |
|
return |
|
global _GLOBAL_CUDA_MEM_FRACTION |
|
_GLOBAL_CUDA_MEM_FRACTION = ratio |
|
torch.cuda.set_per_process_memory_fraction(_GLOBAL_CUDA_MEM_FRACTION, get_accelerator().get_current_device()) |
|
|
|
|
|
def colo_set_cpu_memory_capacity(size: int) -> None: |
|
global _GLOBAL_CPU_MEM_CAPACITY |
|
mem_info = _get_cpu_memory_info() |
|
total_size = mem_info.total |
|
if size <= total_size: |
|
_GLOBAL_CPU_MEM_CAPACITY = size |
|
else: |
|
_GLOBAL_CPU_MEM_CAPACITY = total_size |
|
|
|
|
|
def colo_get_cpu_memory_capacity() -> int: |
|
""" |
|
Get the cpu memory capacity. We may not use all of it. |
|
Returns: |
|
int: _description_ |
|
""" |
|
global _GLOBAL_CPU_MEM_CAPACITY |
|
if _GLOBAL_CPU_MEM_CAPACITY == -1: |
|
mem_info = _get_cpu_memory_info() |
|
return mem_info.total |
|
else: |
|
return _GLOBAL_CPU_MEM_CAPACITY
|
|
|