mirror of https://github.com/hpcaitech/ColossalAI
70 lines
3.9 KiB
Python
70 lines
3.9 KiB
Python
import torch
|
|
import torch.distributed as dist
|
|
from torch.distributed import ProcessGroup
|
|
|
|
|
|
def build_bloom_alibi_tensor_fn(process_group: ProcessGroup) -> torch.Tensor:
|
|
|
|
def build_bloom_alibi_tensor(self, attention_mask: torch.Tensor, num_heads: int,
|
|
dtype: torch.dtype) -> torch.Tensor:
|
|
"""
|
|
Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
|
|
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
|
|
`softmax(l+a) = softmax(l)`. Based on
|
|
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
|
|
TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly.
|
|
|
|
Args:
|
|
Returns tensor shaped (batch_size * num_heads, 1, max_seq_len)
|
|
attention_mask (`torch.Tensor`):
|
|
Token-wise attention mask, this should be of shape (batch_size, max_seq_len).
|
|
num_heads (`int`, *required*):
|
|
number of heads
|
|
dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`):
|
|
dtype of the output tensor
|
|
"""
|
|
import math
|
|
|
|
if dist.is_initialized():
|
|
world_size = dist.get_world_size(process_group)
|
|
num_heads = num_heads * world_size
|
|
|
|
batch_size, seq_length = attention_mask.shape
|
|
closest_power_of_2 = 2**math.floor(math.log2(num_heads))
|
|
base = torch.tensor(2**(-(2**-(math.log2(closest_power_of_2) - 3))),
|
|
device=attention_mask.device,
|
|
dtype=torch.float32)
|
|
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
|
|
slopes = torch.pow(base, powers)
|
|
|
|
if closest_power_of_2 != num_heads:
|
|
extra_base = torch.tensor(2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))),
|
|
device=attention_mask.device,
|
|
dtype=torch.float32)
|
|
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
|
extra_powers = torch.arange(1,
|
|
1 + 2 * num_remaining_heads,
|
|
2,
|
|
device=attention_mask.device,
|
|
dtype=torch.int32)
|
|
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
|
|
|
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
|
|
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
|
|
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
|
|
# => the query_length dimension will then be broadcasted correctly
|
|
# This is more or less identical to T5's relative position bias:
|
|
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
|
|
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
|
|
alibi = slopes[..., None] * arange_tensor
|
|
if dist.is_initialized():
|
|
num_heads_per_rank = int(num_heads / dist.get_world_size(process_group))
|
|
offset = dist.get_rank(process_group) * num_heads_per_rank
|
|
alibi = alibi.view(batch_size, num_heads, 1, seq_length)
|
|
alibi = alibi[:, offset:num_heads_per_rank + offset, :, :]
|
|
return alibi.reshape(batch_size * num_heads_per_rank, 1, seq_length).to(dtype)
|
|
else:
|
|
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
|
|
|
|
return build_bloom_alibi_tensor
|