mirror of https://github.com/hpcaitech/ColossalAI
524 lines
24 KiB
Python
524 lines
24 KiB
Python
from functools import partial
|
|
from types import MethodType
|
|
from typing import Dict, List, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch import Tensor
|
|
from torch.nn import CrossEntropyLoss, Module
|
|
from transformers.modeling_outputs import (
|
|
BaseModelOutputWithPast,
|
|
BaseModelOutputWithPastAndCrossAttentions,
|
|
BaseModelOutputWithPoolingAndCrossAttentions,
|
|
CausalLMOutputWithCrossAttentions,
|
|
)
|
|
from transformers.models.bert.modeling_bert import (
|
|
BertForPreTraining,
|
|
BertForPreTrainingOutput,
|
|
BertLMHeadModel,
|
|
BertModel,
|
|
)
|
|
from transformers.utils import ModelOutput, logging
|
|
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager
|
|
|
|
from .base import Policy
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
def bert_model_forward(
|
|
self: BertModel,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
token_type_ids: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
# labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
hidden_states: Optional[torch.FloatTensor] = None, # this is from the previous stage
|
|
):
|
|
# TODO: add explaination of the output here.
|
|
r"""
|
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
|
the model is configured as a decoder.
|
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
|
`past_key_values`).
|
|
"""
|
|
# debugging
|
|
# preprocess:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (output_hidden_states
|
|
if output_hidden_states is not None else self.config.output_hidden_states)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if self.config.is_decoder:
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
else:
|
|
use_cache = False
|
|
|
|
if stage_manager.is_first_stage():
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
input_shape = input_ids.size()
|
|
elif inputs_embeds is not None:
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
else:
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
batch_size, seq_length = input_shape
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
else:
|
|
input_shape = hidden_states.size()[:-1]
|
|
batch_size, seq_length = input_shape
|
|
device = hidden_states.device
|
|
|
|
# TODO: left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
|
if output_attentions:
|
|
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
|
|
output_attentions = False
|
|
if output_hidden_states:
|
|
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
|
|
output_hidden_states = False
|
|
if use_cache:
|
|
logger.warning_once('use_cache=True is not supported for pipeline models at the moment.')
|
|
use_cache = False
|
|
|
|
# past_key_values_length
|
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
|
|
|
if attention_mask is None:
|
|
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
|
|
|
if token_type_ids is None:
|
|
if hasattr(self.embeddings, "token_type_ids"):
|
|
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
|
token_type_ids = buffered_token_type_ids_expanded
|
|
else:
|
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
|
|
|
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
|
# ourselves in which case we just need to make it broadcastable to all heads.
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
|
attention_mask = extended_attention_mask
|
|
# If a 2D or 3D attention mask is provided for the cross-attention
|
|
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
|
if self.config.is_decoder and encoder_hidden_states is not None:
|
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
|
if encoder_attention_mask is None:
|
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
|
else:
|
|
encoder_extended_attention_mask = None
|
|
|
|
# Prepare head mask if needed
|
|
# 1.0 in head_mask indicate we keep the head
|
|
# attention_probs has shape bsz x n_heads x N x N
|
|
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
|
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
|
hidden_states = hidden_states if hidden_states is not None else None
|
|
|
|
if stage_manager.is_first_stage():
|
|
hidden_states = self.embeddings(
|
|
input_ids=input_ids,
|
|
position_ids=position_ids,
|
|
token_type_ids=token_type_ids,
|
|
inputs_embeds=inputs_embeds,
|
|
past_key_values_length=past_key_values_length,
|
|
)
|
|
|
|
# inherit from bert_layer,this should be changed when we add the feature to record hidden_states
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attentions = () if output_attentions else None
|
|
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
|
|
|
if self.encoder.gradient_checkpointing and self.encoder.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
|
use_cache = False
|
|
next_decoder_cache = () if use_cache else None
|
|
|
|
# calculate the num_layers
|
|
num_layers_per_stage = len(self.encoder.layer) // stage_manager.num_stages
|
|
start_layer = stage_manager.stage * num_layers_per_stage
|
|
end_layer = (stage_manager.stage + 1) * num_layers_per_stage
|
|
|
|
# layer_outputs
|
|
layer_outputs = hidden_states if hidden_states is not None else None
|
|
for idx, encoder_layer in enumerate(self.encoder.layer[start_layer:end_layer], start=start_layer):
|
|
if stage_manager.is_first_stage() and idx == 0:
|
|
encoder_attention_mask = encoder_extended_attention_mask
|
|
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
layer_head_mask = head_mask[idx] if head_mask is not None else None
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
|
|
|
if self.encoder.gradient_checkpointing and self.encoder.training:
|
|
|
|
def create_custom_forward(module):
|
|
|
|
def custom_forward(*inputs):
|
|
return module(*inputs, past_key_value, output_attentions)
|
|
|
|
return custom_forward
|
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(encoder_layer),
|
|
hidden_states,
|
|
attention_mask,
|
|
layer_head_mask,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
)
|
|
else:
|
|
layer_outputs = encoder_layer(
|
|
hidden_states,
|
|
attention_mask,
|
|
layer_head_mask,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
past_key_value,
|
|
output_attentions,
|
|
)
|
|
hidden_states = layer_outputs[0]
|
|
if use_cache:
|
|
next_decoder_cache += (layer_outputs[-1],)
|
|
if output_attentions:
|
|
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
|
if self.config.add_cross_attention:
|
|
all_cross_attentions = all_cross_attentions + \
|
|
(layer_outputs[2],)
|
|
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
# end of a stage loop
|
|
sequence_output = layer_outputs[0] if layer_outputs is not None else None
|
|
|
|
if stage_manager.is_last_stage():
|
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
|
if not return_dict:
|
|
return (sequence_output, pooled_output) + layer_outputs[1:]
|
|
# return dict is not supported at this moment
|
|
else:
|
|
return BaseModelOutputWithPastAndCrossAttentions(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=next_decoder_cache,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attentions,
|
|
cross_attentions=all_cross_attentions,
|
|
)
|
|
|
|
# output of non-first and non-last stages: must be a dict
|
|
else:
|
|
# intermediate stage always return dict
|
|
return {
|
|
'hidden_states': hidden_states,
|
|
}
|
|
|
|
|
|
# The layer partition policy for bertmodel
|
|
class BertModelPolicy(Policy):
|
|
|
|
def __init__(
|
|
self,
|
|
stage_manager: PipelineStageManager,
|
|
num_layers: int,
|
|
):
|
|
super().__init__(stage_manager=stage_manager)
|
|
self.stage_manager = stage_manager
|
|
self.layers_per_stage = self.distribute_layers(num_layers, stage_manager.num_stages)
|
|
|
|
def get_hold_layers(self, module: BertModel) -> List[Module]:
|
|
"""
|
|
get pipeline layers for current stage
|
|
"""
|
|
hold_layers = []
|
|
if self.stage_manager.is_first_stage():
|
|
hold_layers.append(module.embeddings)
|
|
start_idx, end_idx = self.get_stage_index(self.layers_per_stage, self.stage_manager.stage)
|
|
hold_layers.extend(module.encoder.layer[start_idx:end_idx])
|
|
if self.stage_manager.is_last_stage():
|
|
hold_layers.append(module.pooler)
|
|
|
|
return hold_layers
|
|
|
|
def get_shared_params(self, module: BertModel) -> List[Dict[int, Tensor]]:
|
|
'''no shared params in bertmodel'''
|
|
return []
|
|
|
|
def replace_forward(self, module: Module) -> None:
|
|
module.forward = MethodType(partial(bert_model_forward, stage_manager=self.stage_manager), module)
|
|
|
|
|
|
def bert_for_pretraining_forward(
|
|
self: BertForPreTraining,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
token_type_ids: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
labels: Optional[torch.Tensor] = None,
|
|
next_sentence_label: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
):
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
# TODO: left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
|
if output_attentions:
|
|
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
|
|
output_attentions = False
|
|
if output_hidden_states:
|
|
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
|
|
output_hidden_states = False
|
|
if return_dict:
|
|
logger.warning_once('return_dict is not supported for pipeline models at the moment')
|
|
return_dict = False
|
|
|
|
outputs = bert_model_forward(self.bert,
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
stage_manager=stage_manager,
|
|
hidden_states=hidden_states if hidden_states is not None else None)
|
|
past_key_values = None
|
|
all_hidden_states = None
|
|
all_self_attentions = None
|
|
all_cross_attentions = None
|
|
if stage_manager.is_last_stage():
|
|
sequence_output, pooled_output = outputs[:2]
|
|
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
|
|
# the last stage for pretraining model
|
|
total_loss = None
|
|
if labels is not None and next_sentence_label is not None:
|
|
loss_fct = CrossEntropyLoss()
|
|
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
|
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
|
|
total_loss = masked_lm_loss + next_sentence_loss
|
|
|
|
if not return_dict:
|
|
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
|
return ((total_loss,) + output) if total_loss is not None else output
|
|
|
|
return BertForPreTrainingOutput(
|
|
loss=total_loss,
|
|
prediction_logits=prediction_scores,
|
|
seq_relationship_logits=seq_relationship_score,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
else:
|
|
hidden_states = outputs.get('hidden_states')
|
|
|
|
# intermediate stage always return dict
|
|
return {
|
|
'hidden_states': hidden_states,
|
|
}
|
|
|
|
|
|
class BertForPreTrainingPolicy(Policy):
|
|
|
|
def __init__(self, stage_manager: PipelineStageManager, num_layers: int):
|
|
super().__init__(stage_manager=stage_manager)
|
|
self.stage_manager = stage_manager
|
|
self.layers_per_stage = self.distribute_layers(num_layers, stage_manager.num_stages)
|
|
|
|
def get_hold_layers(self, module: BertForPreTraining) -> List[Module]:
|
|
"""
|
|
get pipeline layers for current stage
|
|
"""
|
|
hold_layers = []
|
|
if self.stage_manager.is_first_stage():
|
|
hold_layers.append(module.bert.embeddings)
|
|
|
|
start_idx, end_idx = self.get_stage_index(self.layers_per_stage, self.stage_manager.stage)
|
|
hold_layers.extend(module.bert.encoder.layer[start_idx:end_idx])
|
|
|
|
if self.stage_manager.is_last_stage():
|
|
hold_layers.append(module.bert.pooler)
|
|
hold_layers.append(module.cls)
|
|
|
|
return hold_layers
|
|
|
|
def get_shared_params(self, module: BertForPreTraining) -> List[Dict[int, Tensor]]:
|
|
'''no shared params in bertmodel'''
|
|
return []
|
|
|
|
def replace_forward(self, module: Module) -> None:
|
|
module.forward = MethodType(partial(bert_for_pretraining_forward, stage_manager=self.stage_manager),
|
|
module.forward)
|
|
|
|
|
|
def bert_lmhead_forward(self: BertLMHeadModel,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
token_type_ids: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
labels: Optional[torch.Tensor] = None,
|
|
past_key_values: Optional[List[torch.Tensor]] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
stage_manager: Optional[PipelineStageManager] = None):
|
|
r"""
|
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
|
the model is configured as a decoder.
|
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
|
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
|
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
|
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
|
`past_key_values`).
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if labels is not None:
|
|
use_cache = False
|
|
if output_attentions:
|
|
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
|
|
output_attentions = False
|
|
if output_hidden_states:
|
|
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
|
|
output_hidden_states = False
|
|
if return_dict:
|
|
logger.warning_once('return_dict is not supported for pipeline models at the moment')
|
|
return_dict = False
|
|
|
|
outputs = bert_model_forward(self.bert,
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
past_key_values=past_key_values,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
stage_manager=stage_manager,
|
|
hidden_states=hidden_states if hidden_states is not None else None)
|
|
past_key_values = None
|
|
all_hidden_states = None
|
|
all_self_attentions = None
|
|
all_cross_attentions = None
|
|
|
|
if stage_manager.is_last_stage():
|
|
sequence_output = outputs[0]
|
|
prediction_scores = self.cls(sequence_output)
|
|
|
|
lm_loss = None
|
|
if labels is not None:
|
|
# we are doing next-token prediction; shift prediction scores and input ids by one
|
|
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
|
labels = labels[:, 1:].contiguous()
|
|
loss_fct = CrossEntropyLoss()
|
|
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
|
|
|
if not return_dict:
|
|
output = (prediction_scores,) + outputs[2:]
|
|
return ((lm_loss,) + output) if lm_loss is not None else output
|
|
|
|
return CausalLMOutputWithCrossAttentions(
|
|
loss=lm_loss,
|
|
logits=prediction_scores,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
cross_attentions=outputs.cross_attentions,
|
|
)
|
|
else:
|
|
hidden_states = outputs.get('hidden_states')
|
|
# intermediate stage always return dict
|
|
return {'hidden_states': hidden_states}
|
|
|
|
|
|
class BertLMHeadModelPolicy(Policy):
|
|
|
|
def __init__(self, stage_manager: PipelineStageManager, num_layers: int):
|
|
super().__init__(stage_manager=stage_manager)
|
|
self.stage_manager = stage_manager
|
|
self.layers_per_stage = self.distribute_layers(num_layers, stage_manager.num_stages)
|
|
|
|
def get_hold_layers(self, module: BertLMHeadModel) -> List[Module]:
|
|
"""
|
|
get pipeline layers for current stage
|
|
"""
|
|
hold_layers = []
|
|
if self.stage_manager.is_first_stage():
|
|
hold_layers.append(module.bert.embeddings)
|
|
start_idx, end_idx = self.get_stage_index(self.layers_per_stage, self.stage_manager.stage)
|
|
hold_layers.extend(module.bert.encoder.layer[start_idx:end_idx])
|
|
if self.stage_manager.is_last_stage():
|
|
hold_layers.append(module.bert.pooler)
|
|
hold_layers.append(module.cls)
|
|
|
|
return hold_layers
|
|
|
|
def get_shared_params(self, module: BertLMHeadModel) -> List[Dict[int, Tensor]]:
|
|
'''no shared params in bertmodel'''
|
|
return []
|
|
|
|
def replace_forward(self, module: Module) -> None:
|
|
module.forward = MethodType(partial(bert_lmhead_forward, stage_manager=self.stage_manager), module)
|