ColossalAI/colossalai/fx/profiler/experimental/profiler_function/torch_ops.py

61 lines
2.2 KiB
Python

from functools import reduce
import operator
from typing import Any, Optional, Tuple
import torch
from ..registry import meta_profiler_function
@meta_profiler_function.register(torch.arange)
@meta_profiler_function.register(torch.finfo)
@meta_profiler_function.register(torch.permute)
@meta_profiler_function.register(torch.Tensor.permute)
@meta_profiler_function.register(torch.Tensor.repeat)
@meta_profiler_function.register(torch.index_select)
@meta_profiler_function.register(torch.Tensor.index_select)
@meta_profiler_function.register(torch.squeeze)
@meta_profiler_function.register(torch.Tensor.squeeze)
@meta_profiler_function.register(torch.unsqueeze)
@meta_profiler_function.register(torch.Tensor.unsqueeze)
@meta_profiler_function.register(torch.cat)
@meta_profiler_function.register(torch.concat)
@meta_profiler_function.register(torch.repeat_interleave)
@meta_profiler_function.register(torch.Tensor.repeat_interleave)
@meta_profiler_function.register(torch.flatten)
@meta_profiler_function.register(torch.Tensor.flatten)
@meta_profiler_function.register(torch.roll)
@meta_profiler_function.register(torch.full)
@meta_profiler_function.register(torch.Tensor.cpu)
@meta_profiler_function.register(torch.Tensor.cuda)
@meta_profiler_function.register(torch._assert)
def torch_zero_flops_op(*args, **kwargs) -> Tuple[int, int]:
flops = 0
macs = 0
return flops, macs
@meta_profiler_function.register(torch.where)
def torch_where(condition: torch.Tensor, x: Any, y: Any) -> Tuple[int, int]:
# torch.where returns the broadcasted tensor of condition, x, and y,
# so hack it by using addition
flops = condition.numel()
macs = 0
return flops, macs
@meta_profiler_function.register(torch.max)
def torch_max(input: torch.Tensor,
dim: int = None,
keepdim: bool = False,
*,
out: Optional[torch.Tensor] = None) -> Tuple[int, int]:
macs = 0
assert out is None, 'assigning value to out is not supported yet'
if dim is not None:
shape = list(input.shape)
shape.pop(int(dim))
flops = reduce(operator.mul, shape), macs
return flops, macs
else:
flops = input.numel()
return flops, macs