mirror of https://github.com/hpcaitech/ColossalAI
23 lines
1.2 KiB
Python
23 lines
1.2 KiB
Python
from typing import Tuple, Union
|
|
import torch
|
|
from ..registry import meta_profiler_function
|
|
|
|
|
|
@meta_profiler_function.register(torch.nn.functional.avg_pool1d)
|
|
@meta_profiler_function.register(torch.nn.functional.avg_pool2d)
|
|
@meta_profiler_function.register(torch.nn.functional.avg_pool3d)
|
|
@meta_profiler_function.register(torch.nn.functional.max_pool1d)
|
|
@meta_profiler_function.register(torch.nn.functional.max_pool2d)
|
|
@meta_profiler_function.register(torch.nn.functional.max_pool3d)
|
|
@meta_profiler_function.register(torch.nn.functional.adaptive_avg_pool1d)
|
|
@meta_profiler_function.register(torch.nn.functional.adaptive_avg_pool2d)
|
|
@meta_profiler_function.register(torch.nn.functional.adaptive_avg_pool3d)
|
|
@meta_profiler_function.register(torch.nn.functional.adaptive_max_pool1d)
|
|
@meta_profiler_function.register(torch.nn.functional.adaptive_max_pool2d)
|
|
@meta_profiler_function.register(torch.nn.functional.adaptive_max_pool3d)
|
|
def torch_nn_func_pooling(input: torch.Tensor, *args, **kwargs) -> Tuple[int, int]:
|
|
# all pooling could be considered as going over each input element only once (https://stackoverflow.com/a/67301217)
|
|
flops = input.numel()
|
|
macs = 0
|
|
return flops, macs
|