mirror of https://github.com/hpcaitech/ColossalAI
317 lines
14 KiB
Python
317 lines
14 KiB
Python
import copy
|
|
import gc
|
|
import logging
|
|
import os
|
|
from pathlib import Path
|
|
from shutil import rmtree
|
|
from typing import Any, Callable, Iterator, List, Optional, OrderedDict, Tuple, Union
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
from torch.distributed import ProcessGroup
|
|
from torch.optim import Optimizer
|
|
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
|
|
|
from colossalai.cluster import ProcessGroupMesh
|
|
from colossalai.tensor.d_tensor import (
|
|
is_customized_distributed_tensor,
|
|
is_distributed_tensor,
|
|
to_global,
|
|
to_global_for_customized_distributed_tensor,
|
|
)
|
|
|
|
from .general_checkpoint_io import GeneralCheckpointIO
|
|
from .index_file import CheckpointIndexFile
|
|
from .utils import (
|
|
StateDictSharder,
|
|
calculate_tensor_size,
|
|
gather_distributed_param,
|
|
get_model_base_filenames,
|
|
get_optimizer_base_filenames,
|
|
get_shard_filename,
|
|
is_safetensors_available,
|
|
load_shard_state_dict,
|
|
load_state_dict_into_model,
|
|
save_param_groups,
|
|
save_state_dict,
|
|
save_state_dict_shards,
|
|
)
|
|
|
|
try:
|
|
from torch.nn.modules.module import _EXTRA_STATE_KEY_SUFFIX, _IncompatibleKeys
|
|
except ImportError:
|
|
_EXTRA_STATE_KEY_SUFFIX = '_extra_state'
|
|
|
|
|
|
class HypridParallelCheckpointIO(GeneralCheckpointIO):
|
|
"""
|
|
CheckpointIO for Hybrid Parallel Training.
|
|
|
|
Args:
|
|
dp_group (ProcessGroup): Process group along data parallel dimension.
|
|
pp_group (ProcessGroup): Process group along pipeline parallel dimension.
|
|
tp_group (ProcessGroup): Process group along tensor parallel dimension.
|
|
"""
|
|
|
|
def __init__(self, dp_group: ProcessGroup, pp_group: ProcessGroup, tp_group: ProcessGroup) -> None:
|
|
super().__init__()
|
|
self.dp_group = dp_group
|
|
self.pp_group = pp_group
|
|
self.tp_group = tp_group
|
|
self.dp_rank = dist.get_rank(self.dp_group)
|
|
self.tp_rank = dist.get_rank(self.tp_group)
|
|
self.pp_rank = dist.get_rank(self.pp_group)
|
|
self.dp_size = dist.get_world_size(dp_group)
|
|
self.pp_size = dist.get_world_size(pp_group)
|
|
self.tp_size = dist.get_world_size(tp_group)
|
|
|
|
@staticmethod
|
|
def _model_sharder(model: nn.Module,
|
|
prefix: str = '',
|
|
keep_vars: bool = False,
|
|
size_per_shard: int = 1024) -> Iterator[Tuple[OrderedDict, int]]:
|
|
# An internel method that breaks state_dict of model into shards within limited size.
|
|
|
|
state_dict_sharder = StateDictSharder(size_per_shard)
|
|
|
|
# Save parameters.
|
|
for name, param in model.named_parameters():
|
|
if param is None:
|
|
continue
|
|
# Gather tensor pieces when using tensor parallel.
|
|
param_ = gather_distributed_param(param, keep_vars=False)
|
|
block, block_size = state_dict_sharder.append(prefix + name, param_)
|
|
if block is not None:
|
|
yield block, block_size
|
|
|
|
# Save buffers.
|
|
for name, buf in model.named_buffers():
|
|
if buf is not None and name not in model._non_persistent_buffers_set:
|
|
buffer = buf if keep_vars else buf.detach()
|
|
block, block_size = state_dict_sharder.append(prefix + name, buffer)
|
|
if block is not None:
|
|
yield block, block_size
|
|
|
|
# Save extra states.
|
|
extra_state_key = prefix + _EXTRA_STATE_KEY_SUFFIX
|
|
if getattr(model.__class__, "get_extra_state",
|
|
torch.nn.Module.get_extra_state) is not torch.nn.Module.get_extra_state:
|
|
extra_state = model.get_extra_state()
|
|
block, block_size = state_dict_sharder.append(extra_state_key, extra_state)
|
|
if block is not None:
|
|
yield block, block_size
|
|
|
|
# Return the last block in sharder.
|
|
yield state_dict_sharder.current_block, state_dict_sharder.current_block_size
|
|
|
|
@staticmethod
|
|
def _optimizer_sharder(optimizer: Optimizer, size_per_shard: int = 1024):
|
|
# An internel method that breaks state_dict of optimizer into shards within limited size.
|
|
# TODO (Baizhou): Implement sharding feature of optimizer.
|
|
pass
|
|
|
|
def save_sharded_model(self,
|
|
model: nn.Module,
|
|
checkpoint: str,
|
|
gather_dtensor: bool = True,
|
|
prefix: Optional[str] = None,
|
|
size_per_shard: int = 1024,
|
|
use_safetensors: bool = False) -> None:
|
|
"""
|
|
Save sharded model checkpoint under the given checkpointing path.
|
|
The following files will be created under the path:
|
|
- An index file (pytorch_model.bin.index.json) containing a map between model params/buffers and file names.
|
|
- Multiple files that store state tensors of models.
|
|
If pipeline parallelism is used, the filenames are in the form of "pytorch_model.<prefix>-stage-000XX-shard-000XX.bin".
|
|
If pipeline parallelism is not used, "pytorch_model.<prefix>-000XX.bin"
|
|
|
|
|
|
Args:
|
|
model (nn.Module): Model on local device to be saved.
|
|
checkpoint (str): Checkpointing path which should be a directory path.
|
|
gather_dtensor (bool, optional): Whether to gather_dtensor, currently not used. Defaults to True.
|
|
prefix (str, optional): Perfix of file to save. Defaults to None.
|
|
size_per_shard (int, optional): Size per shard in MB. Defaults to 1024.
|
|
use_safetensors (bool, optional): Whether to use safe tensors. Defaults to False.
|
|
"""
|
|
|
|
if os.path.isfile(checkpoint):
|
|
logging.error(f"Provided path ({checkpoint}) should be a directory, not a file")
|
|
return
|
|
|
|
Path(checkpoint).mkdir(parents=True, exist_ok=True)
|
|
|
|
# Devices along the same dp_group share the same copies of model.
|
|
# So only let the device with dp_rank == 0 save the model.
|
|
if self.dp_rank != 0:
|
|
return
|
|
|
|
# Then collect the sharded parameters & buffers along tp_group.
|
|
# Only devices with tp_size == 0 are responsible for model saving.
|
|
state_dict_shard = HypridParallelCheckpointIO._model_sharder(model, size_per_shard=size_per_shard)
|
|
weights_name, save_index_file = get_model_base_filenames(prefix, use_safetensors)
|
|
index_file = CheckpointIndexFile(checkpoint)
|
|
control_saving = (self.tp_rank == 0)
|
|
|
|
if self.pp_size == 1:
|
|
# When pipeline is not used, save the model shards as in general checkpointIO
|
|
total_size = save_state_dict_shards(sharded_state_dict=state_dict_shard,
|
|
checkpoint=checkpoint,
|
|
index_file=index_file,
|
|
base_filename=weights_name,
|
|
is_master=control_saving,
|
|
use_safetensors=use_safetensors)
|
|
if control_saving:
|
|
index_file.append_meta_data("total_size", total_size)
|
|
index_file.write_index_file(save_index_file)
|
|
logging.info(f"The model is split into checkpoint shards. "
|
|
f"You can find where each parameters has been saved in the "
|
|
f"index located at {save_index_file}.")
|
|
|
|
else:
|
|
# When pipeline is used, each stage produces its own shard files and index files.
|
|
# Index files belonging to each stage are saved under a temporary folder ./tmp_index_files/
|
|
# After all the state_dicts have been saved, the master rank integrates all the index files into one final index file and deletes the tmp folder.
|
|
|
|
final_index_file_path = copy.deepcopy(save_index_file)
|
|
tmp_index_file_folder = os.path.join(checkpoint, "tmp_index_files")
|
|
Path(tmp_index_file_folder).mkdir(parents=True, exist_ok=True)
|
|
|
|
# Manage filenames of sharded weights and index file for each pipeline stage.
|
|
weights_name = weights_name.replace(".bin", f"-stage-{self.pp_rank:05d}-shard.bin")
|
|
weights_name = weights_name.replace(".safetensors", f"-stage-{self.pp_rank:05d}-shard.safetensors")
|
|
save_index_file = save_index_file.replace(".json", f"-stage-{self.pp_rank:05d}.json")
|
|
save_index_file = os.path.join("tmp_index_files", save_index_file)
|
|
|
|
total_size = save_state_dict_shards(sharded_state_dict=state_dict_shard,
|
|
checkpoint=checkpoint,
|
|
index_file=index_file,
|
|
base_filename=weights_name,
|
|
is_master=control_saving,
|
|
use_safetensors=use_safetensors)
|
|
if control_saving:
|
|
assert self.dp_rank == 0 and self.tp_rank == 0, "The saving process should have both dp_rank and tp_rank as 0."
|
|
index_file.append_meta_data("total_size", total_size)
|
|
index_file.write_index_file(save_index_file)
|
|
else:
|
|
return
|
|
|
|
dist.barrier(self.pp_group)
|
|
|
|
# The global master rank integrates the index files and clean the folder.
|
|
if self.pp_rank == 0:
|
|
final_index_file = CheckpointIndexFile(checkpoint)
|
|
final_index_file.append_meta_data("total_size", 0)
|
|
|
|
for filename in os.listdir(tmp_index_file_folder):
|
|
stage_index_file = CheckpointIndexFile.from_file(os.path.join(tmp_index_file_folder, filename))
|
|
final_index_file.metadata["total_size"] += stage_index_file.metadata["total_size"]
|
|
for weight, weight_filename in stage_index_file.weight_map.items():
|
|
final_index_file.append_weight_map(weight, weight_filename)
|
|
|
|
final_index_file.write_index_file(final_index_file_path)
|
|
rmtree(tmp_index_file_folder)
|
|
logging.info(f"The model is split into checkpoint shards. "
|
|
f"You can find where each parameters has been saved in the "
|
|
f"index located at {final_index_file_path}.")
|
|
|
|
def load_sharded_model(self, model: nn.Module, checkpoint_index_file: Path, strict: bool = False):
|
|
"""
|
|
Load sharded model with the given path to index file of checkpoint folder.
|
|
|
|
Args:
|
|
model (nn.Module): The model to be loaded.
|
|
index_file_path (str): Path to the index file of checkpointing folder.
|
|
strict (bool, optional): For name matching during loading state_dict. Defaults to False.
|
|
This argument should be manually set to False since params on same device might be stored in different files.
|
|
"""
|
|
|
|
# Check whether the checkpoint uses safetensors.
|
|
use_safetensors = False
|
|
if "safetensors" in checkpoint_index_file.name:
|
|
use_safetensors = True
|
|
|
|
if use_safetensors and not is_safetensors_available():
|
|
raise ImportError("`safe_serialization` requires the `safetensors` library: `pip install safetensors`.")
|
|
|
|
# Read checkpoint index file.
|
|
ckpt_index_file = CheckpointIndexFile.from_file(checkpoint_index_file)
|
|
ckpt_root_path = ckpt_index_file.root_path
|
|
weight_map = ckpt_index_file.weight_map
|
|
strict = False
|
|
|
|
# Load params & buffers to model.
|
|
# Keep a record of loaded files so that file will not be repeatedly loaded.
|
|
loaded_file = set()
|
|
|
|
def _load(name: str):
|
|
if name not in weight_map:
|
|
raise ValueError(f"{name} is not stored in checkpoint, please check your checkpointing configuration!")
|
|
filename = weight_map[name]
|
|
|
|
# If this param/buffer has been loaded before, directly return.
|
|
if filename in loaded_file:
|
|
return
|
|
|
|
file_path = os.path.join(ckpt_root_path, filename)
|
|
state_dict = load_shard_state_dict(Path(file_path), use_safetensors)
|
|
missing_keys = []
|
|
|
|
load_state_dict_into_model(model,
|
|
state_dict,
|
|
missing_keys=missing_keys,
|
|
strict=strict,
|
|
load_sub_module=True)
|
|
del state_dict
|
|
loaded_file.add(filename)
|
|
|
|
# Load parameters.
|
|
for name, _ in model.named_parameters():
|
|
_load(name)
|
|
|
|
# Load buffers.
|
|
for name, buf in model.named_buffers():
|
|
if buf is not None and name not in model._non_persistent_buffers_set:
|
|
_load(name)
|
|
|
|
# Load extra states.
|
|
extra_state_key = _EXTRA_STATE_KEY_SUFFIX
|
|
if getattr(model.__class__, "get_extra_state",
|
|
torch.nn.Module.get_extra_state) is not torch.nn.Module.get_extra_state:
|
|
_load(extra_state_key)
|
|
|
|
def save_sharded_optimizer(self,
|
|
optimizer: Optimizer,
|
|
checkpoint: str,
|
|
gather_dtensor: bool = True,
|
|
prefix: Optional[str] = None,
|
|
size_per_shard: int = 1024):
|
|
pass
|
|
|
|
def load_sharded_optimizer(self, optimizer: Optimizer, index_file_path: str, prefix: str):
|
|
pass
|
|
|
|
def load_unsharded_model(self, model: nn.Module, checkpoint: str, strict: bool = True):
|
|
# TODO(Baizhou): support this feature after implementing complete state_dict collection
|
|
raise NotImplementedError
|
|
|
|
def save_unsharded_model(self, model: nn.Module, checkpoint: str, gather_dtensor: bool, use_safetensors: bool):
|
|
# TODO(Baizhou): support this feature after implementing complete state_dict collection
|
|
raise NotImplementedError
|
|
|
|
def save_unsharded_optimizer(self, optimizer: Optimizer, checkpoint: str, gather_dtensor: bool):
|
|
# TODO(Baizhou): support this feature after implementing complete state_dict collection
|
|
raise NotImplementedError
|
|
|
|
def load_unsharded_optimizer(self, optimizer: Optimizer, checkpoint: str, gather_dtensor: bool):
|
|
# TODO(Baizhou): support this feature after implementing complete state_dict collection
|
|
raise NotImplementedError
|
|
|
|
def save_lr_scheduler(self, lr_scheduler: LRScheduler, checkpoint: str):
|
|
"""
|
|
Save lr scheduler to checkpoint but only on master process.
|
|
"""
|
|
if self.coordinator.is_master():
|
|
super().save_lr_scheduler(lr_scheduler, checkpoint)
|