ColossalAI/tests/test_utils/test_gradient_accumluation.py

117 lines
3.1 KiB
Python

import os
from functools import partial
from pathlib import Path
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from colossalai.core import global_context as gpc
from colossalai.logging import get_dist_logger
from colossalai.utils import free_port, get_dataloader
from torch.optim import Adam
from torchvision import transforms
from torchvision.datasets import CIFAR10
from torchvision.models import resnet18
# Config
BATCH_SIZE = 16
IMG_SIZE = 224
NUM_CLASSES = 10
CONFIG = dict(
parallel=dict(
pipeline=dict(size=1),
tensor=dict(size=1, mode=None)
),
clip_grad_norm=1.0,
gradient_accumulation=4
)
def run_no_pipeline(rank, world_size, port):
# init dist env
colossalai.launch(
config=CONFIG,
rank=rank,
world_size=world_size,
host='localhost',
port=port,
backend='nccl'
)
# build model
model = resnet18(num_classes=10)
# build dataloaders
train_dataset = CIFAR10(
root=Path(os.environ['DATA']),
download=True,
transform=transforms.Compose(
[
transforms.Resize(size=(IMG_SIZE, IMG_SIZE)),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
]
)
)
train_dataloader = get_dataloader(dataset=train_dataset,
shuffle=True,
batch_size=BATCH_SIZE,
pin_memory=True,
drop_last=True)
# build optimizer
optimizer = Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
engine, train_dataloader, *args = colossalai.initialize(
model=model,
optimizer=optimizer,
criterion=criterion,
train_dataloader=train_dataloader
)
logger = get_dist_logger()
rank = torch.distributed.get_rank()
param_track = []
grad_track = []
next(model.parameters()).retain_grad()
engine.train()
step = 0
for img, label in train_dataloader:
engine.zero_grad()
img = img.cuda()
label = label.cuda()
output = engine(img)
loss = engine.criterion(output, label)
engine.backward(loss)
engine.step()
# check
param_track.append(next(model.parameters())[0].clone())
grad_track.append(next(model.parameters()).grad[0].clone())
step += 1
if step == CONFIG['gradient_accumulation']:
break
assert not torch.all(grad_track[0] == grad_track[-1]), 'grad should be different in different iterations'
assert torch.all(param_track[0] == param_track[1]) and not torch.all(param_track[0] == param_track[-1]), \
'param should be the same in the first few iterations and only changed in the last iteration'
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
def test_engine():
world_size = 4
func = partial(run_no_pipeline, world_size=world_size, port=free_port())
mp.spawn(func, nprocs=world_size)
if __name__ == '__main__':
test_engine()