You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/applications/Chat/coati/trainer/strategies/naive.py

75 lines
2.8 KiB

from typing import Any, Optional
import torch
import torch.nn as nn
import torch.optim as optim
from coati.replay_buffer import ReplayBuffer
from coati.models.base import LM, RewardModel
from coati.models.lora import LoraLinear
from torch.optim import Optimizer
from torch.utils.data import DataLoader
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from .base import Strategy
class NaiveStrategy(Strategy):
"""
Strategy for single GPU. No parallelism is used.
"""
def backward(self, loss: torch.Tensor, model: nn.Module, optimizer: optim.Optimizer, **kwargs) -> None:
loss.backward()
def optimizer_step(self, optimizer: optim.Optimizer, **kwargs) -> None:
optimizer.step()
def setup_distributed(self) -> None:
pass
def setup_model(self, model: nn.Module) -> nn.Module:
return model
def setup_optimizer(self, optimizer: optim.Optimizer, model: nn.Module) -> optim.Optimizer:
return optimizer
def setup_dataloader(self, replay_buffer: ReplayBuffer, pin_memory: bool = False) -> DataLoader:
return DataLoader(replay_buffer,
batch_size=replay_buffer.sample_batch_size,
shuffle=True,
drop_last=True,
pin_memory=pin_memory,
collate_fn=replay_buffer.collate_fn)
def save_model(self, model: nn.Module, path: str, only_rank0: bool = False, tokenizer: Optional[PreTrainedTokenizerBase] = None) -> None:
for module in model.modules():
if isinstance(module, LoraLinear):
module.merge_weights = True
module.eval()
if isinstance(model, RewardModel):
state_dict = model.state_dict()
torch.save(state_dict, path)
else:
try:
if isinstance(model, LM):
model = model.model
model.save_pretrained(path)
if tokenizer is not None:
tokenizer.save_pretrained(path)
except AttributeError:
state_dict = model.state_dict()
torch.save(state_dict, path)
def load_model(self, model: nn.Module, path: str, map_location: Any = None, strict: bool = True) -> None:
unwrapped_model = self._unwrap_model(model)
state_dict = torch.load(path, map_location=map_location)
unwrapped_model.load_state_dict(state_dict, strict=strict)
def save_optimizer(self, optimizer: Optimizer, path: str, only_rank0: bool = False) -> None:
torch.save(optimizer.state_dict(), path)
def load_optimizer(self, optimizer: Optimizer, path: str, map_location: Any = None) -> None:
state_dict = torch.load(path, map_location=map_location)
optimizer.load_state_dict(state_dict)