You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/applications/Chat/coati/trainer/strategies/base.py

137 lines
4.7 KiB

from abc import ABC, abstractmethod
from contextlib import nullcontext
from typing import Any, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
from coati.models.base import LM, Actor, Critic, RewardModel
from coati.replay_buffer import ReplayBuffer
from torch.optim import Optimizer
from torch.utils.data import DataLoader
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from .sampler import DistributedSampler
ModelOptimPair = Tuple[nn.Module, Optimizer]
ModelOrModelOptimPair = Union[nn.Module, ModelOptimPair]
class Strategy(ABC):
"""
Base class for training strategies.
"""
def __init__(self) -> None:
super().__init__()
self.setup_distributed()
@abstractmethod
def backward(self, loss: torch.Tensor, model: nn.Module, optimizer: Optimizer, **kwargs) -> None:
pass
@abstractmethod
def optimizer_step(self, optimizer: Optimizer, **kwargs) -> None:
pass
@abstractmethod
def setup_distributed(self) -> None:
pass
@abstractmethod
def setup_model(self, model: nn.Module) -> nn.Module:
pass
@abstractmethod
def setup_optimizer(self, optimizer: Optimizer, model: nn.Module) -> Optimizer:
pass
@abstractmethod
def setup_dataloader(self, replay_buffer: ReplayBuffer, pin_memory: bool = False) -> DataLoader:
pass
def model_init_context(self):
return nullcontext()
def prepare(
self, *models_or_model_optim_pairs: ModelOrModelOptimPair
) -> Union[List[ModelOrModelOptimPair], ModelOrModelOptimPair]:
"""Prepare models or model-optimizer-pairs based on each strategy.
Example::
>>> # when fine-tuning actor and critic
>>> (actor, actor_optim), (critic, critic_optim), reward_model, initial_model = strategy.prepare((actor, actor_optim), (critic, critic_optim), reward_model, initial_model)
>>> # or when training reward model
>>> (reward_model, reward_model_optim) = strategy.prepare((reward_model, reward_model_optim))
>>> # or just inference
>>> actor, critic = strategy.prepare(actor, critic)
Returns:
Union[List[ModelOrModelOptimPair], ModelOrModelOptimPair]: Models or model-optimizer-pairs in the original order.
"""
def prepare_model(model: nn.Module):
if isinstance(model, Actor):
return Actor(self.setup_model(self._unwrap_model(model)))
return self.setup_model(self._unwrap_model(model))
rets = []
for arg in models_or_model_optim_pairs:
if isinstance(arg, tuple):
assert len(arg) == 2, f'Expect (model, optimizer) pair, got a tuple with size "{len(arg)}"'
model, optimizer = arg
model = prepare_model(model)
optimizer = self.setup_optimizer(optimizer, self._unwrap_model(model))
rets.append((model, optimizer))
elif isinstance(arg, nn.Module):
rets.append(prepare_model(arg))
else:
raise RuntimeError(f'Expect model or (model, optimizer) pair, got {type(arg)}')
if len(rets) == 1:
return rets[0]
return rets
@staticmethod
def _unwrap_model(model: nn.Module) -> nn.Module:
"""Useful for saving state dict. As actor is wrapped by Actor class again in `prepare()`, we should unwrap it before saving.
Args:
model (nn.Module): an actor or a critic
"""
if isinstance(model, Actor) or isinstance(model, LM):
return model.model
return model
@staticmethod
def _unwrap_actor(actor: Actor) -> nn.Module:
"""Get `actor.model` from a wrapped (by `prepare()`) actor. Useful for getting original huggingface model.
Args:
actor (Actor): a wrapped actor
"""
return Strategy._unwrap_model(actor)
@abstractmethod
def save_model(self,
model: nn.Module,
path: str,
only_rank0: bool = False,
tokenizer: Optional[PreTrainedTokenizerBase] = None) -> None:
pass
@abstractmethod
def load_model(self, model: nn.Module, path: str, map_location: Any = None, strict: bool = True) -> None:
pass
@abstractmethod
def save_optimizer(self, optimizer: Optimizer, path: str, only_rank0: bool = False) -> None:
pass
@abstractmethod
def load_optimizer(self, optimizer: Optimizer, path: str, map_location: Any = None) -> None:
pass
def setup_sampler(self, dataset) -> DistributedSampler:
return DistributedSampler(dataset, 1, 0)