You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/examples/language/opt/opt_train_demo.py

157 lines
5.6 KiB

import datasets
import torch
import transformers
from args import parse_demo_args
from data import NetflixDataset, netflix_collator
from tqdm import tqdm
from transformers import AutoConfig, AutoTokenizer, OPTForCausalLM, get_linear_schedule_with_warmup
from transformers.utils.versions import require_version
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin, TorchDDPPlugin
from colossalai.cluster import DistCoordinator
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn.optimizer import HybridAdam
require_version("datasets>=1.8.0", "To fix: pip install -r requirements.txt")
require_version("transformers>=4.20.0", "To fix: pip install -r requirements.txt")
output_transform_fn = lambda x: x
criterion = lambda x: x.loss
def move_to_cuda(batch, device):
return {k: v.to(device) for k, v in batch.items()}
def train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, dataloader, booster, coordinator):
torch.cuda.synchronize()
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
total_step = len(dataloader)
model.train()
optimizer.zero_grad()
dataloader = iter(dataloader)
with tqdm(
range(total_step), desc=f"Epoch [{epoch + 1}]", disable=not (coordinator.is_master() or is_pp_last_stage)
) as pbar:
# Forward pass
for _ in pbar:
if use_pipeline:
outputs = booster.execute_pipeline(
dataloader, model, _criterion, optimizer, return_loss=True
)
# Backward and optimize
if is_pp_last_stage:
loss = outputs["loss"]
pbar.set_postfix({"loss": loss.item()})
else:
data = next(dataloader)
data = move_to_cuda(data)
outputs = model(**data)
loss = _criterion(outputs, None)
# Backward
booster.backward(loss, optimizer)
pbar.set_postfix({"loss": loss.item()})
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
def main():
args = parse_demo_args()
# Launch ColossalAI
colossalai.launch_from_torch(config={}, seed=args.seed)
coordinator = DistCoordinator()
world_size = coordinator.world_size
# Manage loggers
disable_existing_loggers()
logger = get_dist_logger()
if coordinator.is_master():
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# Build OPT model
config = AutoConfig.from_pretrained(args.model_name_or_path)
model = OPTForCausalLM.from_pretrained(args.model_name_or_path, config=config)
logger.info(f"Finish loading model from {args.model_name_or_path}", ranks=[0])
# Enable gradient checkpointing
model.gradient_checkpointing_enable()
# Set plugin
booster_kwargs = {}
if args.plugin == "torch_ddp_fp16":
booster_kwargs["mixed_precision"] = "fp16"
if args.plugin.startswith("torch_ddp"):
plugin = TorchDDPPlugin()
elif args.plugin == "gemini":
plugin = GeminiPlugin(offload_optim_frac=1.0, pin_memory=True, initial_scale=2**5)
elif args.plugin == "low_level_zero":
plugin = LowLevelZeroPlugin(initial_scale=2**5)
elif args.plugin == "hybrid_parallel":
# modify the param accordingly for finetuning test cases
plugin = HybridParallelPlugin(
tp_size=2,
pp_size=2,
num_microbatches=2,
enable_all_optimization=True,
zero_stage=0,
precision="fp16",
initial_scale=1,
)
logger.info(f"Set plugin as {args.plugin}", ranks=[0])
# Prepare tokenizer and dataloader
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
dataset = NetflixDataset(tokenizer)
dataloader = plugin.prepare_dataloader(
dataset, batch_size=args.batch_size, shuffle=True, drop_last=True, collate_fn=netflix_collator
)
# Set optimizer
optimizer = HybridAdam(model.parameters(), lr=(args.learning_rate * world_size), weight_decay=args.weight_decay)
# Set lr scheduler
total_steps = len(dataloader) * args.num_epoch
num_warmup_steps = int(args.warmup_ratio * total_steps)
lr_scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=len(dataloader) * args.num_epoch
)
# Define criterion
def _criterion(outputs, inputs):
outputs = output_transform_fn(outputs)
loss = criterion(outputs)
return loss
# Set booster
booster = Booster(plugin=plugin, **booster_kwargs)
model, optimizer, _criterion, dataloader, lr_scheduler = booster.boost(
model=model, optimizer=optimizer, dataloader=dataloader, criterion=_criterion, lr_scheduler=lr_scheduler
)
# Start finetuning
logger.info(f"Start finetuning", ranks=[0])
for epoch in range(args.num_epoch):
train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, dataloader, booster, coordinator)
# Finish training and evaluate
logger.info(f"Finish finetuning", ranks=[0])
booster.save_model(model, args.output_path, shard=True)
logger.info(f"Saving model checkpoint to {args.output_path}", ranks=[0])
if __name__ == "__main__":
main()